Abstract
Solid phase peptide synthesis (SPPS) based on Fmoc chemistry has become a commonly used technique in peptide chemistry, as it can be easily conducted using automated machine, and not requiring highly toxic HF in comparison to Boc-SPPS. With the fast development in the emerging field of protein chemical synthesis, many efforts have been endeavored aiming to find more efficient methods for preparing peptide fragments required in ligation reactions. This review briefly summarizes recent advances in the engineering and modification of Fmoc-SPPS-derived peptides, which can be used as the N-terminal fragments in a native chemical ligation (NCL) or NCL-type ligation reactions.
This is a preview of subscription content, access via your institution.
References
Dawson PE, Muir TW, Clark-Lewis I, Kent SBH. Science, 1994, 266: 776–779
Merrifield RB. J Am Chem Soc, 1963, 85: 2149–2154
Li X, Kawakami T, Aimoto S. Tetrahedron Lett, 1998, 39: 8669–8672
Clippingdale AB, Barrow CJ, Wade JD. J Peptide Sci, 2000, 6: 225–234
Bu X, Xie G, Law CW, Guo Z. Tetrahedron Lett, 2002, 43: 2419–2422
Hasegawa K, Sha YL, Bang JK, Kawakami T, Akaji K, Aimoto S. Lett Peptide Sci, 2001, 8: 277–284
Raz R. Rademann J. Org Lett, 2011, 13: 1606–1609
Ingenito R, Bianchi E, Fattori D, Pessi A. J Am Chem Soc, 1999, 121: 11369–11374
Shin Y, Winans KA, Backes BJ, Kent SBH, Ellman JA, Bertozzi CR. J Am Chem Soc, 1999, 121: 11684–11689
Burlina F, Morris C, Behrendt R, White P, Offer J. Chem Commun, 2012, 48: 2579–2581
Mende F, Seitz O. Angew Chem Int Ed, 2011, 50: 1232–1240
Zheng JS, Tang S, Huang YC, Liu L. Acc Chem Res, 2013, 46: 2475–2484
Thomas F. J Pept Sci, 2013, 19: 141–147
Kawakami T. Protein ligation and total synthesis I. In: Liu L, Ed. Peptide Thioester Formation via an Intramolecular N to S Acyl Shift for Peptide Ligation. Switzerland: Springer International Publishing, 2014. 107–135
Melnyk O, Agouridas V. Curr Opin Chem Biol, 2014, 22: 137–145
Huang YC, Fang GM, Liu L. Natl Sci Rev, 2016: 1–10
Huang Y, Liu L. Sci China Chem, 2015, 58: 1779–1781
Pedersen SL, Jensen K. Instruments for automated peptide synthesis. In: Jensen KJ, Tofteng Shelton P, Pedersen SL, Eds. Peptide Synthesis and Applications. Vol. 1047. Methods in Molecular Biology. Totowa: Humana Press, 2013. 215–224
Jones JH, Witty MJ. J Chem Soc Perkin Trans 1, 1979, 3203
Sakakibara S. Biopolymers, 1995, 37: 17–28
von Eggelkraut-Gottanka R, Klose A, Beck-Sickinger AG, Beyermann M. Tetrahedron Lett, 2003, 44: 3551–3554
Flemer S. J Pept Sci, 2009, 15: 693–696
Mezo AR, Cheng RP, Imperiali B. J Am Chem Soc, 2001, 123: 3885–3891
Kajihara Y, Yoshihara A, Hirano K, Yamamoto N. Carbohyd Res, 2006, 341: 1333–1340
Nagalingam A, Radford S, Warriner S. Synlett, 2007, 2007: 2517–2520
Williams MW, Young GT. J Chem Soc, 1963, 881
Barlos K, Gatos D. Biopolymers, 1999, 51: 266–278
Heinlein C, Varón Silva D, Tröster A, Schmidt J, Gross A, Unverzagt C. Angew Chem Int Ed, 2011, 50: 6406–6410
Asahina Y, Komiya S, Ohagi A, Fujimoto R, Tamagaki H, Nakagawa K, Sato T, Akira S, Takao T, Ishii A, Nakahara Y, Hojo H. Angew Chem Int Ed, 2015, 54: 8226–8230
Ding H, Shigenaga A, Sato K, Morishita K, Otaka A. Org Lett, 2011, 13: 5588–5591
Aussedat B, Fasching B, Johnston E, Sane N, Nagorny P, Danishefsky SJ. J Am Chem Soc, 2012, 134: 3532–3541
Fernández-Tejada A, Vadola PA, Danishefsky SJ. J Am Chem Soc, 2014, 136: 8450–8458
Hackeng TM, Griffin JH, Dawson PE. Proc Natl Acad Sci USA, 1999, 96: 10068–10073
Pollock SB, Kent SBH. Chem Commun, 2011, 47: 2342–2344
Bodanszky M. Nature, 1955, 175: 685
Wan Q, Chen J, Yuan Y, Danishefsky SJ. J Am Chem Soc, 2008, 130: 15814–15816
Durek T, Alewood PF. Angew Chem Int Ed, 2011, 50: 12042–12045
Raibaut L, Seeberger P, Melnyk O. Org Lett, 2013, 15: 5516–5519
Nakamura T, Shigenaga A, Sato K, Tsuda Y, Sakamoto K, Otaka A. Chem Commun, 2014, 50: 58–60
Nakamura T, Sato K, Naruse N, Kitakaze K, Inokuma T, Hirokawa T, Shigenaga A, Itoh K, Otaka A. ChemBioChem, 2016, 17: 1986–1992
Hinderaker MP, Raines RT. Protein Sci, 2003, 12: 1188–1194
Hodges JA, Raines RT. Org Lett, 2006, 8: 4695–4697
Choudhary A, Kamer KJ, Powner MW, Sutherland JD, Raines RT. ACS Chem Biol, 2010, 5: 655–657
Gui Y, Qiu L, Li Y, Li H, Dong S. J Am Chem Soc, 2016, 138: 4890–4899
Wan Q, Danishefsky SJ. Angew Chem Int Ed, 2007, 46: 9248–9252
Ali Shah MI, Xu ZY, Liu L, Jiang YY, Shi J. RSC Adv, 2016, 6: 68312–68321
Botti P, Villain M, Manganiello S, Gaertner H. Org Lett, 2004, 6: 4861–4864
George EA, Novick RP, Muir TW. J Am Chem Soc, 2008, 130: 4914–4924
Liu F, Mayer JP. J Org Chem, 2013, 78: 9848–9856
Warren JD, Miller JS, Keding SJ, Danishefsky SJ. J Am Chem Soc, 2004, 126: 6576–6578
Zheng JS, Cui HK, Fang GM, Xi WX, Liu L. ChemBioChem, 2010, 11: 511–515
Fang GM, Cui HK, Zheng JS, Liu L. Chem Eur J Chem Bio, 2010, 11: 1061–1065
Hojo H, Onuma Y, Akimoto Y, Nakahara Y, Nakahara Y. Tetrahedron Lett, 2007, 48: 25–28
Asahina Y, Nabeshima K, Hojo H. Tetrahedron Lett, 2015, 56: 1370–1373
Terrier VP, Adihou H, Arnould M, Delmas AF, Aucagne V. Chem Sci, 2016, 7: 339–345
Shah NH, Muir TW. Chem Sci, 2014, 5: 446–461
Ollivier N, Dheur J, Mhidia R, Blanpain A, Melnyk O. Org Lett, 2010, 12: 5238–5241
Hou W, Zhang X, Li F, Liu CF. Org Lett, 2011, 13: 386–389
Ollivier N, Vicogne J, Vallin A, Drobecq H, Desmet R, El Mahdi O, Leclercq B, Goormachtigh G, Fafeur V, Melnyk O. Angew Chem Int Ed, 2012, 51: 209–213
Raibaut L, Drobecq H, Melnyk O. Org Lett, 2015, 17: 3636–3639
Raibaut L, Cargoët M, Ollivier N, Chang YM, Drobecq H, Boll E, Desmet R, Monbaliu JCM, Melnyk O. Chem Sci, 2016, 7: 2657–2665
Zheng JS, Chang HN, Wang FL, Liu L. J Am Chem Soc, 2011, 133: 11080–11083
Zheng JS, Chen X, Tang S, Chang HN, Wang FL, Zuo C. Org Lett, 2014, 16: 4908–4911
Otaka A, Sato K, Shigenaga A. Protein ligation and total synthesis II. In: Liu L, Ed. Chemical Synthesis of Proteins Using N-sulfanylethylanilide Peptides, Based on N-S Acyl Transfer Chemistry. Switzerland: Springer International Publishing, 2014. 33–56
Tsuda S, Shigenaga A, Bando K, Otaka A. Org Lett, 2009, 11: 823–826
Eto M, Naruse N, Morimoto K, Yamaoka K, Sato K, Tsuji K, Inokuma T, Shigenaga A, Otaka A. Org Lett, 2016, 18: 4416–4419
Aihara K, Yamaoka K, Naruse N, Inokuma T, Shigenaga A, Otaka A. Org Lett, 2016, 18: 596–599
Zacharie B, Sauvé G, Penney C. Tetrahedron, 1993, 49: 10489–10500
Pascal R, Chauvey D, Sola R. Tetrahedron Lett, 1994, 35: 6291–6294
Blanco-Canosa JB, Dawson PE. Angew Chem Int Ed, 2008, 47: 6851–6855
Tiefenbrunn TK, Blanco-Canosa J, Dawson PE. Biopolymers, 2010, 94: 405–413
Siman P, Blatt O, Moyal T, Danieli T, Lebendiker M, Lashuel HA, Friedler A, Brik A. ChemBioChem, 2011, 12: 1097–1104
Fauvet B, Butterfield SM, Fuks J, Brik A, Lashuel HA. Chem Commun, 2013, 49: 9254–9256
Okamoto R, Mandal K, Sawaya MR, Kajihara Y, Yeates TO, Kent SBH. Angew Chem Int Ed, 2014, 53: 5194–5198
White PD, Behrendt R. J Pep Sci, 2010, 16: 71–72
Mahto SK, Howard CJ, Shimko JC, Ottesen JJ. ChemBioChem, 2011, 12: 2488–2494
Shimko JC, North JA, Bruns AN, Poirier MG, Ottesen JJ. J Mol Biol, 2011, 408: 187–204
Blanco-Canosa JB, Nardone B, Albericio F, Dawson PE. J Am Chem Soc, 2015, 137: 7197–7209
Wang JX, Fang GM, He Y, Qu DL, Yu M, Hong ZY, Liu L. Angew Chem Int Ed, 2015, 54: 2194–2198
Sato T, Saito Y, Aimoto S. J Peptide Sci, 2005, 11: 410–416
Johnson ECB, Kent SBH. Tetrahedron Lett, 2007, 48: 1795–1799
Bang D, Kent SBH. Proc Natl Acad Sci USA, 2005, 102: 5014–5019
Gordon WR, Bang D, Hoff WD, Kent SBH. Bioorgan Med Chem, 2013, 21: 3436–3442
Curtius T. J Prakt Chem, 1904, 70: 57–72
Yanaihara N, Yanaihara C, Dupuis G, Beacham J, Camble R, Hofmann K. J Am Chem Soc, 1969, 91: 2184–2185
Felix AM, Merrifield RB. J Am Chem Soc, 1970, 92: 1385–1391
Romovacek H, Dowd SR, Kawasaki K, Nishi N, Hofmann K. J Am Chem Soc, 1979, 101: 6081–6091
Fang GM, Li YM, Shen F, Huang YC, Li JB, Lin Y, Cui HK, Liu L. Angew Chem Int Ed, 2011, 50: 7645–7649
Fang GM, Wang JX, Liu L. Angew Chem Int Ed, 2012, 51: 10347–10350
Zheng JS, Tang S, Qi YK, Wang ZP, Liu L. Nat Protoc, 2013, 8: 2483–2495
Tang S, Si YY, Wang ZP, Mei KR, Chen X, Cheng JY, Zheng JS, Liu L. Angew Chem Int Ed, 2015, 54: 5713–5717
Li YM, Yang MY, Huang YC, Li YT, Chen PR, Liu L. ACS Chem Biol, 2012, 7: 1015–1022
Reif A, Siebenhaar S, Tröster A, Schmälzlein M, Lechner C, Velisetty P, Gottwald K, Pöhner C, Boos I, Schubert V, Rose-John S, Unverzagt C. Angew Chem Int Ed, 2014, 53: 12125–12131
Chang HN, Liu BY, Qi YK, Zhou Y, Chen YP, Pan KM, Li WW, Zhou XM, Ma WW, Fu CY, Qi YM, Liu L, Gao YF. Angew Chem Int Ed, 2015, 54: 11760–11764
Murakami M, Kiuchi T, Nishihara M, Tezuka K, Okamoto R, Izumi M, Kajihara Y. Sci Adv, 2016, 2: e1500678
Tsuda Y, Shigenaga A, Tsuji K, Denda M, Sato K, Kitakaze K, Nakamura T, Inokuma T, Itoh K, Otaka A. ChemOpen, 2015, 4: 448–452
Miyajima R, Tsuda Y, Inokuma T, Shigenaga A, Imanishi M, Futaki S, Otaka A. Biopolymers, 2016, 106: 531–546
Sharma I, Crich D. J Org Chem, 2011, 76: 6518–6524
Hogenauer TJ, Wang Q, Sanki AK, Gammon AJ, Chu CHL, Kaneshiro CM, Kajihara Y, Michael K. Org Biomol Chem, 2007, 5: 759–762
Pardo A, Hogenauer TJ, Cai Z, Vellucci JA, Castillo EM, Dirk CW, Franz AH, Michael K. ChemBioChem, 2015, 16: 1884–1889
Muir TW, Sondhi D, Cole PA. Proc Natl Acad Sci USA, 1998, 95: 6705–6710
Okamoto R, Morooka K, Kajihara Y. Angew Chem Int Ed, 2012, 51: 191–196
Okamoto R, Isoe M, Izumi M, Kajihara Y. J Pept Sci, 2016, 22: 343–351
Okamoto R, Kimura M, Ishimizu T, Izumi M, Kajihara Y. Chem Eur J, 2014, 20: 10425–10430
Kenner GW, McDermott JR, Sheppard RC. J Chem Soc D, 1971, 636
Elashal HE, Sim YE, Raj M. Chem Sci, 2016, doi: 10.1039/C6SC02162J
van Berkel SS, van Eldijk MB, van Hest JCM. Angew Chem Int Ed, 2011, 50: 8806–8827
Lee CL, Li X. Curr Opin Chem Biol, 2014, 22: 108–114
Rohrbacher F, Wucherpfennig TG, Bode JW. Protein ligation and total synthesis II. In: Liu L, Ed. Chemical Protein Synthesis with the KAHA Ligation. Switzerland: Springer International Publishing, 2015. 1–31
Harmand TJ, Murar CE, Bode JW. Nat Protoc, 2016, 11: 1130–1147
Thuaud F, Rohrbacher F, Zwicky A, Bode JW. Helv Chim Acta, 2016, 99: 868–894
Acknowledgments
This work was supported by the Peking University Health Science Center (BMU20130354), State Key Laboratory of Natural and Biomimetic Drugs, the National Recruitment Program of Global Youth Experts (1000 Plan), and the National Natural Science Foundation of China (21502005).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, H., Dong, S. Recent advances in the preparation of Fmoc-SPPS-based peptide thioester and its surrogates for NCL-type reactions. Sci. China Chem. 60, 201–213 (2017). https://doi.org/10.1007/s11426-016-0381-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-016-0381-1