Skip to main content
Log in

Optimal extent of fluorination enabling strong temperature-dependent aggregation, favorable blend morphology and high-efficiency polymer solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Temperature-dependent aggregation is a key property for some donor polymers to realize favorable bulk-heterojunction (BHJ) morphologies and high-efficiency (>10%) polymer solar cells. Previous studies find that an important structural feature that enables such temperature-dependent aggregation property is the 2nd position branched alkyl chains sitting between two thiophene units. In this report, we demonstrate that an optimal extent of fluorination on the polymer backbone is a second essential structural feature that enables the strong temperature-dependent aggregation property. We compare the properties of three structurally similar polymers with 0, 2 or 4 fluorine substitutions in each repeating unit through an in-depth morphological study. We show that the non-fluorinated polymer does not aggregate in solution (0.02 mg mL−1 in chlorobenzene) at room temperature, which results in poor polymer crystallinity and extremely large polymer domains. On the other hand, the polymer with four fluorine atoms in each repeating unit exhibits an excessively strong tendency to aggregate, which makes it difficult to process and causes a large domain. Only the polymer with two fluorine atoms in each repeating unit exhibits a suitable extent of temperature-dependent aggregation property. As a result, its blend film achieves a favorable morphology and high power conversion efficiency. This provides another key design rationale for developing donor polymers with suitable temperature-dependent aggregation properties and thus high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Nat Photon, 2009, 3: 297–302

    Article  CAS  Google Scholar 

  2. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat Photon, 2012, 6: 593–597

    Article  CAS  Google Scholar 

  3. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. Nat Mater, 2005, 4: 864–868

    Article  CAS  Google Scholar 

  4. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia S, Williams SP. Adv Mater, 2010, 22: 3839–3856

    Article  CAS  Google Scholar 

  5. Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58: 248–256

    Article  CAS  Google Scholar 

  6. Huang F. Sci China Chem, 2015, 58: 190–190

    Article  CAS  Google Scholar 

  7. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027

    Article  CAS  Google Scholar 

  8. Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734–4739

    Article  CAS  Google Scholar 

  9. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293

    Article  CAS  Google Scholar 

  10. Lin H, Chen S, Li Z, Lai JYL, Yang G, McAfee T, Jiang K, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Adv Mater, 2015, 27: 7299–7304

    Article  CAS  Google Scholar 

  11. Li Z, Lin H, Jiang K, Carpenter J, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Nano Energy, 2015, 15: 607–615

    Article  CAS  Google Scholar 

  12. Hu H, Jiang K, Kim JH, Yang G, Li Z, Ma T, Lu G, Qu Y, Ade H, Yan H. J Mater Chem A, 2016, 4: 5039–5043

    Article  CAS  Google Scholar 

  13. Hu H, Jiang K, Yang G, Liu J, Li Z, Lin H, Liu Y, Zhao J, Zhang J, Huang F, Qu Y, Ma W, Yan H. J Am Chem Soc, 2015, 137: 14149–14157

    Article  CAS  Google Scholar 

  14. Li Y. Sci China Chem, 2015, 58: 188–188

    Article  CAS  Google Scholar 

  15. Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell TP, Yip HL, Huang F, Cao Y. Chem Mater, 2014, 26: 3009–3017

    Article  Google Scholar 

  16. Wang Y, Xin X, Lu Y, Xiao T, Xu X, Zhao N, Hu X, Ong BS, Ng SC. Macromolecules, 2013, 46: 9587–9592

    Article  CAS  Google Scholar 

  17. Stuart AC, Tumbleston JR, Zhou H, Li W, Liu S, Ade H, You W. J Am Chem Soc, 2013, 135: 1806–1815

    Article  CAS  Google Scholar 

  18. Qian D, Ma W, Li Z, Guo X, Zhang S, Ye L, Ade H, Tan Z, Hou J. J Am Chem Soc, 2013, 135: 8464–8467

    Article  CAS  Google Scholar 

  19. Wu Y, Li Z, Ma W, Huang Y, Huo L, Guo X, Zhang M, Ade H, Hou J. Adv Mater, 2013, 25: 3449–3455

    Article  CAS  Google Scholar 

  20. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ. J Am Chem Soc, 2008, 130: 3619–3623

    Article  CAS  Google Scholar 

  21. Chen W, Xu T, He F, Wang W, Wang C, Strzalka J, Liu Y, Wen J, Miller DJ, Chen J, Hong K, Yu L, Darling SB. Nano Lett, 2011, 11: 3707–3713

    Article  Google Scholar 

  22. Collins BA, Tumbleston JR, Ade H. J Phys Chem Lett, 2011, 2: 3135–3145

    Article  CAS  Google Scholar 

  23. Pfannmöller M, Fluügge H, Benner G, Wacker I, Sommer C, Hanselmann M, Schmale S, Schmidt H, Hamprecht FA, Rabe T, Kowalsky W, Schroöder RR. Nano Lett, 2011, 11: 3099–3107

    Article  Google Scholar 

  24. Westacott P, Tumbleston JR, Shoaee S, Fearn S, Bannock JH, Gilchrist JB, Heutz S, de Mello J, Heeney M, Ade H, Durrant J, McPhail DS, Stingelin N. Energy Environ Sci, 2013, 6: 2756

    Article  CAS  Google Scholar 

  25. Ma W, Tumbleston JR, Ye L, Wang C, Hou J, Ade H. Adv Mater, 2014, 26: 4234–4241

    Article  CAS  Google Scholar 

  26. Jo JW, Jung JW, Jung EH, Ahn H, Shin TJ, Jo WH. Energy Environ Sci, 2015, 8: 2427–2434

    Article  CAS  Google Scholar 

  27. Jo JW, Bae S, Liu F, Russell TP, Jo WH. Adv Funct Mater, 2015, 25: 120–125

    Article  CAS  Google Scholar 

  28. Ma W, Yang G, Jiang K, Carpenter JH, Wu Y, Meng X, McAfee T, Zhao J, Zhu C, Wang C, Ade H, Yan H. Adv Energy Mater, 2015, 5: 1501400

    Article  Google Scholar 

  29. Smilgies DM. J Appl Crystallogr, 2013, 46: 286–286

    Article  CAS  Google Scholar 

  30. Swaraj S, Wang C, Yan H, Watts B, Luöning J, McNeill CR, Ade H. Nano Lett, 2010, 10: 2863–2869

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Basic Research Program of China (2013CB834705), HK JEBN Limited (Hong Kong), the Hong Kong Research Grants Council (T23-407/13-N, N_HKUST623/13, 606012), HKUST President’s Office through SSTSP scheme (EP201) and the National Natural Science Foundation of China (21374090, 21504066, 21534003, 51320105014). X-ray data was acquired at beamlines 11.0.1.2 and 7.3.3 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ma or He Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Li, Z., Jiang, K. et al. Optimal extent of fluorination enabling strong temperature-dependent aggregation, favorable blend morphology and high-efficiency polymer solar cells. Sci. China Chem. 60, 545–551 (2017). https://doi.org/10.1007/s11426-016-0378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0378-y

Keywords

Navigation