Advertisement

Science China Chemistry

, Volume 60, Issue 4, pp 545–551 | Cite as

Optimal extent of fluorination enabling strong temperature-dependent aggregation, favorable blend morphology and high-efficiency polymer solar cells

  • Guofang Yang
  • Zhengke Li
  • Kui Jiang
  • Jie Zhang
  • Jianya Chen
  • Guangye Zhang
  • Fei Huang
  • Wei MaEmail author
  • He YanEmail author
Articles

Abstract

Temperature-dependent aggregation is a key property for some donor polymers to realize favorable bulk-heterojunction (BHJ) morphologies and high-efficiency (>10%) polymer solar cells. Previous studies find that an important structural feature that enables such temperature-dependent aggregation property is the 2nd position branched alkyl chains sitting between two thiophene units. In this report, we demonstrate that an optimal extent of fluorination on the polymer backbone is a second essential structural feature that enables the strong temperature-dependent aggregation property. We compare the properties of three structurally similar polymers with 0, 2 or 4 fluorine substitutions in each repeating unit through an in-depth morphological study. We show that the non-fluorinated polymer does not aggregate in solution (0.02 mg mL−1 in chlorobenzene) at room temperature, which results in poor polymer crystallinity and extremely large polymer domains. On the other hand, the polymer with four fluorine atoms in each repeating unit exhibits an excessively strong tendency to aggregate, which makes it difficult to process and causes a large domain. Only the polymer with two fluorine atoms in each repeating unit exhibits a suitable extent of temperature-dependent aggregation property. As a result, its blend film achieves a favorable morphology and high power conversion efficiency. This provides another key design rationale for developing donor polymers with suitable temperature-dependent aggregation properties and thus high performance.

Keywords

temperature-dependent aggregation fluorination morphology polymer solar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was partially supported by the National Basic Research Program of China (2013CB834705), HK JEBN Limited (Hong Kong), the Hong Kong Research Grants Council (T23-407/13-N, N_HKUST623/13, 606012), HKUST President’s Office through SSTSP scheme (EP201) and the National Natural Science Foundation of China (21374090, 21504066, 21534003, 51320105014). X-ray data was acquired at beamlines 11.0.1.2 and 7.3.3 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

References

  1. 1.
    Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Nat Photon, 2009, 3: 297–302CrossRefGoogle Scholar
  2. 2.
    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat Photon, 2012, 6: 593–597CrossRefGoogle Scholar
  3. 3.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. Nat Mater, 2005, 4: 864–868CrossRefGoogle Scholar
  4. 4.
    Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia S, Williams SP. Adv Mater, 2010, 22: 3839–3856CrossRefGoogle Scholar
  5. 5.
    Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58: 248–256CrossRefGoogle Scholar
  6. 6.
    Huang F. Sci China Chem, 2015, 58: 190–190CrossRefGoogle Scholar
  7. 7.
    Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027CrossRefGoogle Scholar
  8. 8.
    Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734–4739CrossRefGoogle Scholar
  9. 9.
    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293CrossRefGoogle Scholar
  10. 10.
    Lin H, Chen S, Li Z, Lai JYL, Yang G, McAfee T, Jiang K, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Adv Mater, 2015, 27: 7299–7304CrossRefGoogle Scholar
  11. 11.
    Li Z, Lin H, Jiang K, Carpenter J, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Nano Energy, 2015, 15: 607–615CrossRefGoogle Scholar
  12. 12.
    Hu H, Jiang K, Kim JH, Yang G, Li Z, Ma T, Lu G, Qu Y, Ade H, Yan H. J Mater Chem A, 2016, 4: 5039–5043CrossRefGoogle Scholar
  13. 13.
    Hu H, Jiang K, Yang G, Liu J, Li Z, Lin H, Liu Y, Zhao J, Zhang J, Huang F, Qu Y, Ma W, Yan H. J Am Chem Soc, 2015, 137: 14149–14157CrossRefGoogle Scholar
  14. 14.
    Li Y. Sci China Chem, 2015, 58: 188–188CrossRefGoogle Scholar
  15. 15.
    Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell TP, Yip HL, Huang F, Cao Y. Chem Mater, 2014, 26: 3009–3017CrossRefGoogle Scholar
  16. 16.
    Wang Y, Xin X, Lu Y, Xiao T, Xu X, Zhao N, Hu X, Ong BS, Ng SC. Macromolecules, 2013, 46: 9587–9592CrossRefGoogle Scholar
  17. 17.
    Stuart AC, Tumbleston JR, Zhou H, Li W, Liu S, Ade H, You W. J Am Chem Soc, 2013, 135: 1806–1815CrossRefGoogle Scholar
  18. 18.
    Qian D, Ma W, Li Z, Guo X, Zhang S, Ye L, Ade H, Tan Z, Hou J. J Am Chem Soc, 2013, 135: 8464–8467CrossRefGoogle Scholar
  19. 19.
    Wu Y, Li Z, Ma W, Huang Y, Huo L, Guo X, Zhang M, Ade H, Hou J. Adv Mater, 2013, 25: 3449–3455CrossRefGoogle Scholar
  20. 20.
    Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ. J Am Chem Soc, 2008, 130: 3619–3623CrossRefGoogle Scholar
  21. 21.
    Chen W, Xu T, He F, Wang W, Wang C, Strzalka J, Liu Y, Wen J, Miller DJ, Chen J, Hong K, Yu L, Darling SB. Nano Lett, 2011, 11: 3707–3713CrossRefGoogle Scholar
  22. 22.
    Collins BA, Tumbleston JR, Ade H. J Phys Chem Lett, 2011, 2: 3135–3145CrossRefGoogle Scholar
  23. 23.
    Pfannmöller M, Fluügge H, Benner G, Wacker I, Sommer C, Hanselmann M, Schmale S, Schmidt H, Hamprecht FA, Rabe T, Kowalsky W, Schroöder RR. Nano Lett, 2011, 11: 3099–3107CrossRefGoogle Scholar
  24. 24.
    Westacott P, Tumbleston JR, Shoaee S, Fearn S, Bannock JH, Gilchrist JB, Heutz S, de Mello J, Heeney M, Ade H, Durrant J, McPhail DS, Stingelin N. Energy Environ Sci, 2013, 6: 2756CrossRefGoogle Scholar
  25. 25.
    Ma W, Tumbleston JR, Ye L, Wang C, Hou J, Ade H. Adv Mater, 2014, 26: 4234–4241CrossRefGoogle Scholar
  26. 26.
    Jo JW, Jung JW, Jung EH, Ahn H, Shin TJ, Jo WH. Energy Environ Sci, 2015, 8: 2427–2434CrossRefGoogle Scholar
  27. 27.
    Jo JW, Bae S, Liu F, Russell TP, Jo WH. Adv Funct Mater, 2015, 25: 120–125CrossRefGoogle Scholar
  28. 28.
    Ma W, Yang G, Jiang K, Carpenter JH, Wu Y, Meng X, McAfee T, Zhao J, Zhu C, Wang C, Ade H, Yan H. Adv Energy Mater, 2015, 5: 1501400CrossRefGoogle Scholar
  29. 29.
    Smilgies DM. J Appl Crystallogr, 2013, 46: 286–286CrossRefGoogle Scholar
  30. 30.
    Swaraj S, Wang C, Yan H, Watts B, Luöning J, McNeill CR, Ade H. Nano Lett, 2010, 10: 2863–2869CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Guofang Yang
    • 1
    • 3
  • Zhengke Li
    • 3
  • Kui Jiang
    • 3
    • 4
  • Jie Zhang
    • 2
  • Jianya Chen
    • 1
  • Guangye Zhang
    • 3
  • Fei Huang
    • 2
  • Wei Ma
    • 1
    Email author
  • He Yan
    • 2
    • 3
    • 4
    Email author
  1. 1.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina
  2. 2.Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhouChina
  3. 3.Department of Chemistry and Energy InstituteThe Hong Kong University of Science and TechnologyClearWater Bay, Kowloon, Hong KongChina
  4. 4.HKUST-Shenzhen Research InstituteShenzhenChina

Personalised recommendations