Science China Chemistry

, Volume 60, Issue 2, pp 188–200 | Cite as

Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids

Reviews

Abstract

Metalloproteins have inspired chemists for many years to synthesize artificial catalysts that mimic native enzymes. As a complementary approach to studying native enzymes or making synthetic models, biosynthetic approach using small and stable proteins to model native enzymes has offered advantages of incorporating non-covalent secondary sphere interactions under physiological conditions. However, most biosynthetic models are restricted to natural amino acids. To overcome this limitation, incorporating unnatural amino acids into the biosynthetic models has shown promises. In this review, we summarize first synthetic, semisynthetic and biological methods of incorporates unnatural amino acids (UAAs) into proteins, followed by progress made in incorporating UAAs into both native metalloproteins and their biosynthetic models to fine-tune functional properties beyond native enzymes or their variants containing natural amino acids, such as reduction potentials of azurin, O2 reduction rates and percentages of product formation of HCO models in Mb, the rate of radical transport in ribonucleotide reductase (RNR) and the proton and electron transfer pathways in photosystem II (PS II). We also discuss how this endeavour has allowed systematic investigations of precise roles of conserved residues in metalloproteins, such as Met121 in azurin, Tyr244 that is cross-linked to one of the three His ligands to CuB in HCO, Tyr122, 356, 730 and 731 in RNR and TyrZ in PS II. These examples have demonstrated that incorporating UAAs has provided a new dimension in our efforts to mimic native enzymes and in providing deeper insights into structural features responsible high enzymatic activity and reaction mechanisms, making it possible to design highly efficient artificial catalysts with similar or even higher activity than native enzymes.

Keywords

metalloenzymes heme proteins copper proteins ribonucleotide reductase protein design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yano J, Yachandra V. Chem Rev, 2014, 114: 4175–4205CrossRefGoogle Scholar
  2. 2.
    Minnihan EC, Nocera DG, Stubbe JA. Acc Chem Res, 2013, 46: 2524–2535CrossRefGoogle Scholar
  3. 3.
    Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Chem Rev, 2014, 114: 4041–4062CrossRefGoogle Scholar
  4. 4.
    Kjaergaard CH, Rossmeisl J, Nørskov JK. Inorg Chem, 2010, 49: 3567–3572CrossRefGoogle Scholar
  5. 5.
    Rodríguez Couto S, Toca Herrera JL. Biotech Adv, 2006, 24: 500–513CrossRefGoogle Scholar
  6. 6.
    Kim E, Chufán EE, Kamaraj K, Karlin KD. Chem Rev, 2004, 104: 1077–1134CrossRefGoogle Scholar
  7. 7.
    Collman JP, Devaraj NK, Decréau RA, Yang Y, Yan YL, Ebina W, Eberspacher TA, Chidsey CED. Science, 2007, 315: 1565–1568CrossRefGoogle Scholar
  8. 8.
    Nagano Y, Liu JG, Naruta Y, Ikoma T, Tero-Kubota S, Kitagawa T. J Am Chem Soc, 2006, 128: 14560–14570CrossRefGoogle Scholar
  9. 9.
    Collman JP, Ghosh S, Dey A, Decréau RA, Yang Y. J Am Chem Soc, 2009, 131: 5034–5035CrossRefGoogle Scholar
  10. 10.
    De Grado WF, Summa CM, Pavone V, Nastri F, Lombardi A. Annu Rev Biochem, 1999, 68: 779–819CrossRefGoogle Scholar
  11. 11.
    Lu Y. Angew Chem Int Ed, 2006, 45: 5588–5601CrossRefGoogle Scholar
  12. 12.
    Lu Y, Yeung N, Sieracki N, Marshall NM. Nature, 2009, 460: 855–862CrossRefGoogle Scholar
  13. 13.
    Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Chem Rev, 2014, 114: 3495–3578CrossRefGoogle Scholar
  14. 14.
    Heinisch T, Ward TR. Curr Opin Chem Biol, 2010, 14: 184–199CrossRefGoogle Scholar
  15. 15.
    Reedy CJ, Gibney BR. Chem Rev, 2004, 104: 617–650CrossRefGoogle Scholar
  16. 16.
    Ueno T, Abe S, Yokoi N, Watanabe Y. Coord Chem Rev, 2007, 251: 2717–2731CrossRefGoogle Scholar
  17. 17.
    Das R, Baker D. Annu Rev Biochem, 2008, 77: 363–382CrossRefGoogle Scholar
  18. 18.
    Kiss G, Çelebi-Ölçüm N, Moretti R, Baker D, Houk KN. Angew Chem Int Ed, 2013, 52: 5700–5725CrossRefGoogle Scholar
  19. 19.
    Zastrow ML, Pecoraro VL. Coord Chem Rev, 2013, 257: 2565–2588CrossRefGoogle Scholar
  20. 20.
    Dürrenberger M, Ward TR. Curr Opin Chem Biol, 2014, 19: 99–106CrossRefGoogle Scholar
  21. 21.
    Petrik ID, Liu J, Lu Y. Curr Opin Chem Biol, 2014, 19: 67–75CrossRefGoogle Scholar
  22. 22.
    Zastrow ML, Peacock AFA, Stuckey JA, Pecoraro VL. Nat Chem, 2011, 4: 118–123CrossRefGoogle Scholar
  23. 23.
    Joh NH, Wang T, Bhate MP, Acharya R, Wu Y, Grabe M, Hong M, Grigoryan G, De Grado WF. Science, 2014, 346: 1520–1524CrossRefGoogle Scholar
  24. 24.
    Marshall NM, Garner DK, Wilson TD, Gao YG, Robinson H, Nilges MJ, Lu Y. Nature, 2009, 462: 113–116CrossRefGoogle Scholar
  25. 25.
    Wang ZH, Lin YW, Rosell FI, Ni FY, Lu HJ, Yang PY, Tan XS, Li XY, Huang ZX, Mauk AG. ChemBioChem, 2007, 8: 607–609CrossRefGoogle Scholar
  26. 26.
    Xue LL, Wang YH, Xie Y, Yao P, Wang WH, Qian W, Huang ZX, Wu J, Xia ZX. Biochem, 1999, 38: 11961–11972CrossRefGoogle Scholar
  27. 27.
    Cai YB, Li XH, Jing J, Zhang JL. Metallomics, 2013, 5: 828–835CrossRefGoogle Scholar
  28. 28.
    Cai YB, Yao SY, Hu M, Liu X, Zhang JL. Inorg Chem Front, 2016, 3: 1236–1244CrossRefGoogle Scholar
  29. 29.
    Liu CC, Schultz PG. Annu Rev Biochem, 2010, 79: 413–444CrossRefGoogle Scholar
  30. 30.
    Kang M, Light K, Ai HW, Shen W, Kim CH, Chen PR, Lee HS, Solomon EI, Schultz PG. ChemBioChem, 2014, 15: 822–825CrossRefGoogle Scholar
  31. 31.
    Kent SBH. Chem Soc Rev, 2009, 38: 338–351CrossRefGoogle Scholar
  32. 32.
    Muir TW, Sondhi D, Cole PA. Proc Natl Acad Sci USA, 1998, 95: 6705–6710CrossRefGoogle Scholar
  33. 33.
    Evans TC, Benner J, Xu MQ. Protein Sci, 1998, 7: 2256–2264CrossRefGoogle Scholar
  34. 34.
    Ayers B, Blaschke UK, Camarero JA, Cotton GJ, Holford M, Muir TW. Biopolymers, 1999, 51: 343–354CrossRefGoogle Scholar
  35. 35.
    Wilson TD, Yu Y, Lu Y. Coord Chem Rev, 2013, 257: 260–276CrossRefGoogle Scholar
  36. 36.
    David R, Richter MPO, Beck-Sickinger AG. Eur J Biochem, 2004, 271: 663–677CrossRefGoogle Scholar
  37. 37.
    Köhn M, Breinbauer R. Angew Chem Int Ed, 2004, 43: 3106–3116CrossRefGoogle Scholar
  38. 38.
    Young TS, Schultz PG. J Biol Chem, 2010, 285: 11039–11044CrossRefGoogle Scholar
  39. 39.
    Wang L, Brock A, Herberich B, Schultz PG. Science, 2001, 292: 498–500CrossRefGoogle Scholar
  40. 40.
    Chin JW, Ashton Cropp T, Anderson JC, Mukherji M, Zhang Z, Schultz PG. Science, 2003, 301: 964–967CrossRefGoogle Scholar
  41. 41.
    Liu W, Brock A, Chen S, Chen S, Schultz PG. Nat Meth, 2007, 4: 239–244CrossRefGoogle Scholar
  42. 42.
    Greiss S, Chin JW. J Am Chem Soc, 2011, 133: 14196–14199CrossRefGoogle Scholar
  43. 43.
    Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J. Angew Chem Int Ed, 2013, 52: 3958–3962CrossRefGoogle Scholar
  44. 44.
    Niu W, Schultz PG, Guo J. ACS Chem Biol, 2013, 8: 1640–1645CrossRefGoogle Scholar
  45. 45.
    Xiao H, Chatterjee A, Choi S, Bajjuri KM, Sinha SC, Schultz PG. Angew Chem Int Ed, 2013, 52: 14080–14083CrossRefGoogle Scholar
  46. 46.
    Lin YW, Wang JY, Lu Y. Sci China Chem, 2014, 57: 346–355CrossRefGoogle Scholar
  47. 47.
    Solomon EI, Szilagyi RK, DeBeer George S, Basumallick L. Chem Rev, 2004, 104: 419–458CrossRefGoogle Scholar
  48. 48.
    Dennison C. Coord Chem Rev, 2005, 249: 3025–3054CrossRefGoogle Scholar
  49. 49.
    Dempsey JL, Winkler JR, Gray HB. Chem Rev, 2010, 110: 7024–7039CrossRefGoogle Scholar
  50. 50.
    Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Chem Rev, 2014, 114: 4366–4469CrossRefGoogle Scholar
  51. 51.
    Liu J, Meier KK, Tian S, Zhang JL, Guo H, Schulz CE, Robinson H, Nilges MJ, Münck E, Lu Y. J Am Chem Soc, 2014, 136: 12337–12344CrossRefGoogle Scholar
  52. 52.
    Hwang HJ, Carey JR, Brower ET, Gengenbach AJ, Abramite JA, Lu Y. J Am Chem Soc, 2005, 127: 15356–15357CrossRefGoogle Scholar
  53. 53.
    Mizoguchi TJ, Di Bilio AJ, Gray HB, Richards JH. J Am Chem Soc, 1992, 114: 10076–10078CrossRefGoogle Scholar
  54. 54.
    De Beer S, Kiser CN, Mines GA, Richards JH, Gray HB, Solomon EI, Hedman B, Hodgson KO. Inorg Chem, 1999, 38: 433–438CrossRefGoogle Scholar
  55. 55.
    Berry SM, Gieselman MD, Nilges MJ, van der Donk WA, Lu Y. J Am Chem Soc, 2002, 124: 2084–2085CrossRefGoogle Scholar
  56. 56.
    Berry SM, Ralle M, Low DW, Blackburn NJ, Lu Y. J Am Chem Soc, 2003, 125: 8760–8768CrossRefGoogle Scholar
  57. 57.
    Ralle M, Berry SM, Nilges MJ, Gieselman MD, van der Donk WA, Lu Y, Blackburn NJ. J Am Chem Soc, 2004, 126: 7244–7256CrossRefGoogle Scholar
  58. 58.
    Sarangi R, Gorelsky SI, Basumallick L, Hwang HJ, Pratt RC, Stack TDP, Lu Y, Hodgson KO, Hedman B, Solomon EI. J Am Chem Soc, 2008, 130: 3866–3877CrossRefGoogle Scholar
  59. 59.
    Clark KM, Yu Y, van der Donk WA, Blackburn NJ, Lu Y. Inorg Chem Front, 2014, 1: 153–158CrossRefGoogle Scholar
  60. 60.
    Gray HB, Malmström BG, Williams RJP. J Biol Inorg Chem, 2000, 5: 551–559CrossRefGoogle Scholar
  61. 61.
    Garner DK, Vaughan MD, Hwang HJ, Savelieff MG, Berry SM, Honek JF, Lu Y. J Am Chem Soc, 2006, 128: 15608–15617CrossRefGoogle Scholar
  62. 62.
    Clark KM, Yu Y, Marshall NM, Sieracki NA, Nilges MJ, Blackburn NJ, van der Donk WA, Lu Y. J Am Chem Soc, 2010, 132: 10093–10101CrossRefGoogle Scholar
  63. 63.
    Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC. Nature, 1960, 185: 422–427CrossRefGoogle Scholar
  64. 64.
    Ozaki S, Matsui T, Roach MP, Watanabe Y. Coord Chem Rev, 2000, 198: 39–59CrossRefGoogle Scholar
  65. 65.
    Lin YW, Nie CM, Liao LF. J Mol Model, 2012, 18: 4409–4415CrossRefGoogle Scholar
  66. 66.
    Zhou Q, Hu M, Zhang W, Jiang L, Perrett S, Zhou J, Wang J. Angew Chem Int Ed, 2013, 52: 1203–1207CrossRefGoogle Scholar
  67. 67.
    Miner KD, Mukherjee A, Gao YG, Null EL, Petrik ID, Zhao X, Yeung N, Robinson H, Lu Y. Angew Chem Int Ed, 2012, 51: 5589–5592CrossRefGoogle Scholar
  68. 68.
    Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J. Angew Chem Int Ed, 2012, 51: 4312–4316CrossRefGoogle Scholar
  69. 69.
    Lin YW, Yeung N, Gao YG, Miner KD, Tian S, Robinson H, Lu Y. Proc Natl Acad Sci USA, 2010, 107: 8581–8586CrossRefGoogle Scholar
  70. 70.
    Zhao Y, Du KJ, Gao SQ, He B, Wen GB, Tan X, Lin YW. J Inorg Biochem, 2016, 156: 113–121CrossRefGoogle Scholar
  71. 71.
    Shu XG, Su JH, Du KJ, You Y, Gao SQ, Wen GB, Tan X, Lin YW. ChemOpen, 2016, 5: 192–196Google Scholar
  72. 72.
    Ozaki S, Roach MP, Matsui T, Watanabe Y. Acc Chem Res, 2001, 34: 818–825CrossRefGoogle Scholar
  73. 73.
    Lin YW, Sawyer EB, Wang J. Chem Asian J, 2013, 8: 2534–2544CrossRefGoogle Scholar
  74. 74.
    Wikstrom M, Morgan JE. J Biol Chem, 1992, 267: 10266–10273Google Scholar
  75. 75.
    Babcock GT, Wikström M. Nature, 1992, 356: 301–309CrossRefGoogle Scholar
  76. 76.
    Pawate AS, Morgan J, Namslauer A, Mills D, Brzezinski P, Ferguson-Miller S, Gennis RB. Biochemistry, 2002, 41: 13417–13423CrossRefGoogle Scholar
  77. 77.
    Lee HJ, Gennis RB, Ädelroth P. Proc Natl Acad Sci USA, 2011, 108: 17661–17666CrossRefGoogle Scholar
  78. 78.
    Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. Biochimica Biophysica Acta (BBA)-Bioenergetics, 2011, 1807: 1398–1413CrossRefGoogle Scholar
  79. 79.
    Moore AL, Carré JE, Affourtit C, Albury MS, Crichton PG, Kita K, Heathcote P. Biochimica Biophysica Acta (BBA)-Bioenergetics, 2008, 1777: 327–330CrossRefGoogle Scholar
  80. 80.
    Wikström M. Biochimica Biophysica Acta (BBA)-Bioenergetics, 2012, 1817: 468–475CrossRefGoogle Scholar
  81. 81.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S. Science, 1996, 272: 1136–1144CrossRefGoogle Scholar
  82. 82.
    Wang N, Zhao X, Lu Y. J Am Chem Soc, 2005, 127: 16541–16547CrossRefGoogle Scholar
  83. 83.
    Sigman JA, Kwok BC, Lu Y. J Am Chem Soc, 2000, 122: 8192–8196CrossRefGoogle Scholar
  84. 84.
    Zhao X, Yeung N, Wang Z, Guo Z, Lu Y. Biochemistry, 2005, 44: 1210–1214CrossRefGoogle Scholar
  85. 85.
    Zhao X, Nilges MJ, Lu Y. Biochemistry, 2005, 44: 6559–6564CrossRefGoogle Scholar
  86. 86.
    Sigman JA, Wang X, Lu Y. J Am Chem Soc, 2001, 123: 6945–6946CrossRefGoogle Scholar
  87. 87.
    Sigman JA, Kim HK, Zhao X, Carey JR, Lu Y. Proc Natl Acad Sci USA, 2003, 100: 3629–3634CrossRefGoogle Scholar
  88. 88.
    Yu Y, Mukherjee A, Nilges MJ, Hosseinzadeh P, Miner KD, Lu Y. J Am Chem Soc, 2014, 136: 1174–1177CrossRefGoogle Scholar
  89. 89.
    Yu Y, Lv X, Li J, Zhou Q, Cui C, Hosseinzadeh P, Mukherjee A, Nilges MJ, Wang J, Lu Y. J Am Chem Soc, 2015, 137: 4594–4597CrossRefGoogle Scholar
  90. 90.
    Yang Y, Zhou Q, Wang L, Liu X, Zhang W, Hu M, Dong J, Li J, Xiaoxuan L, Ouyang H, Li H, Gao F, Gong W, Lu Y, Wang J. Chem Sci, 2015, 6: 3881–3885CrossRefGoogle Scholar
  91. 91.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S. Science, 1995, 269: 1069–1074CrossRefGoogle Scholar
  92. 92.
    Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Jie Fei M, Peters Libeu C, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T. Science, 1998, 280: 1723–1729CrossRefGoogle Scholar
  93. 93.
    Iwata S, Ostermeier C, Ludwig B, Michel H. Nature, 1995, 376: 660–669CrossRefGoogle Scholar
  94. 94.
    Ostermeier C, Harrenga A, Ermler U, Michel H. Proc Natl Acad Sci USA, 1997, 94: 10547–10553CrossRefGoogle Scholar
  95. 95.
    Soulimane T. Embo J, 2000, 19: 1766–1776CrossRefGoogle Scholar
  96. 96.
    Hemp J, Christian C, Barquera B, Gennis RB, Martínez TJ. Biochemistry, 2005, 44: 10766–10775CrossRefGoogle Scholar
  97. 97.
    Rauhamäki V, Baumann M, Soliymani R, Puustinen A, Wikström M. Proc Natl Acad Sci USA, 2006, 103: 16135–16140CrossRefGoogle Scholar
  98. 98.
    Tomson F, Bailey JA, Gennis RB, Unkefer CJ, Li Z, Silks LA, Martinez RA, Donohoe RJ, Dyer RB, Woodruff WH. Biochemistry, 2002, 41: 14383–14390CrossRefGoogle Scholar
  99. 99.
    Mather MW, Springer P, Hensel S, Buse G, Fee J. J Biol Chem, 1993, 268: 5395–5408Google Scholar
  100. 100.
    Hemp J, Robinson DE, Ganesan KB, Martinez TJ, Kelleher NL, Gennis RB. Biochemistry, 2006, 45: 15405–15410CrossRefGoogle Scholar
  101. 101.
    McCauley KM, Vrtis JM, Dupont J, van der Donk WA. J Am Chem Soc, 2000, 122: 2403–2404CrossRefGoogle Scholar
  102. 102.
    Blomberg MRA, Siegbahn PEM, Wikström M. Inorg Chem, 2003, 42: 5231–5243CrossRefGoogle Scholar
  103. 103.
    Das TK, Pecoraro C, Tomson FL, Gennis RB, Rousseau DL. Biochemistry, 1998, 37: 14471–14476CrossRefGoogle Scholar
  104. 104.
    Pinakoulaki E, Pfitzner U, Ludwig B, Varotsis C. J Biol Chem, 2002, 277: 13563–13568CrossRefGoogle Scholar
  105. 105.
    Lu Y, Chakraborty S, Miner KD, Wilson TD, Mukherjee A, Yu Y, Liu J, Marshall NM. 3.19-Metalloprotein design. In: Reedijk J, Kenneth R, Eds. Poeppelmeier Comprehensive Inorganic Chemistry II. 2nd Ed. Amsterdam: Elsevier, 2013. 565–593CrossRefGoogle Scholar
  106. 106.
    Marshall NM, Miner KD, Wilson TD, Lu Y. Rational design of protein cages for alternative enzymatic functions. In: Ueno T, Watanabe Y. Eds. Coordination Chemistry in Protein Cages. Hoboken: John Wiley & Sons, Inc., 2013. 111–147CrossRefGoogle Scholar
  107. 107.
    Stubbe JA, Nocera DG, Yee CS, Chang MCY. Chem Rev, 2003, 103: 2167–2202CrossRefGoogle Scholar
  108. 108.
    Rappaport F, Boussac A, Force DA, Peloquin J, Brynda M, Sugiura M, Un S, Britt RD, Diner BA. J Am Chem Soc, 2009, 131: 4425–4433CrossRefGoogle Scholar
  109. 109.
    Yee CS, Chang MCY, Ge J, Nocera DG, Stubbe JA. J Am Chem Soc, 2003, 125: 10506–10507CrossRefGoogle Scholar
  110. 110.
    Seyedsayamdost MR, Yee CS, Reece SY, Nocera DG, Stubbe JA. J Am Chem Soc, 2006, 128: 1562–1568CrossRefGoogle Scholar
  111. 111.
    Chang MCY, Yee CS, Nocera DG, Stubbe JA. J Am Chem Soc, 2004, 126: 16702–16703CrossRefGoogle Scholar
  112. 112.
    Seyedsayamdost MR, Stubbe JA. J Am Chem Soc, 2006, 128: 2522–2523CrossRefGoogle Scholar
  113. 113.
    Seyedsayamdost MR, Argirevic T, Minnihan EC, Stubbe JA, Bennati M. J Am Chem Soc, 2009, 131: 15729–15738CrossRefGoogle Scholar
  114. 114.
    Seyedsayamdost MR, Xie J, Chan CTY, Schultz PG, Stubbe JA. J Am Chem Soc, 2007, 129: 15060–15071CrossRefGoogle Scholar
  115. 115.
    Minnihan EC, Seyedsayamdost MR, Uhlin U, Stubbe JA. J Am Chem Soc, 2011, 133: 9430–9440CrossRefGoogle Scholar
  116. 116.
    Minnihan EC, Young DD, Schultz PG, Stubbe JA. J Am Chem Soc, 2011, 133: 15942–15945CrossRefGoogle Scholar
  117. 117.
    Ravichandran KR, Minnihan EC, Wei Y, Nocera DG, Stubbe JA. J Am Chem Soc, 2015, 137: 14387–14395CrossRefGoogle Scholar
  118. 118.
    Chang MCY, Yee CS, Stubbe JA, Nocera DG. Proc Natl Acad Sci USA, 2004, 101: 6882–6887CrossRefGoogle Scholar
  119. 119.
    Reece SY, Seyedsayamdost MR, Stubbe JA, Nocera DG. J Am Chem Soc, 2007, 129: 13828–13830CrossRefGoogle Scholar
  120. 120.
    Yokoyama K, Uhlin U, Stubbe JA. J Am Chem Soc, 2010, 132: 15368–15379CrossRefGoogle Scholar
  121. 121.
    Holder PG, Pizano AA, Anderson BL, Stubbe JA, Nocera DG. J Am Chem Soc, 2012, 134: 1172–1180CrossRefGoogle Scholar
  122. 122.
    Olshansky L, Pizano AA, Wei Y, Stubbe JA, Nocera DG. J Am Chem Soc, 2014, 136: 16210–16216CrossRefGoogle Scholar
  123. 123.
    Olshansky L, Stubbe JA, Nocera DG. J Am Chem Soc, 2016, 138: 1196–1205CrossRefGoogle Scholar
  124. 124.
    Oyala PH, Ravichandran KR, Funk MA, Stucky PA, Stich TA, Drennan CL, Britt RD, Stubbe JA. J Am Chem Soc, 2016, 138: 7951–7964CrossRefGoogle Scholar
  125. 125.
    Minnihan EC, Ando N, Brignole EJ, Olshansky L, Chittuluru J, Asturias FJ, Drennan CL, Nocera DG, Stubbe J. Proc Natl Acad Sci USA, 2013, 110: 3835–3840CrossRefGoogle Scholar
  126. 126.
    Umena Y, Kawakami K, Shen JR, Kamiya N. Nature, 2011, 473: 55–60CrossRefGoogle Scholar
  127. 127.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. J Comput Chem, 2005, 26: 1781–1802CrossRefGoogle Scholar
  128. 128.
    Yu H, Schulten K. PLoS Comput Biol, 2013, 9: e1002892CrossRefGoogle Scholar
  129. 129.
    Rohl CA, Strauss CEM, Misura KMS, Baker D. Protein structure prediction using rosetta. In: Ludwig B, Michael LJ, Eds. Methods Enzymol. Vol. 383. Cambridge: Academic Press, 2004. 66–93Google Scholar
  130. 130.
    Mills JH, Khare SD, Bolduc JM, Forouhar F, Mulligan VK, Lew S, Seetharaman J, Tong L, Stoddard BL, Baker D. J Am Chem Soc, 2013, 135: 13393–13399CrossRefGoogle Scholar
  131. 131.
    Lee HS, Spraggon G, Schultz PG, Wang F. J Am Chem Soc, 2009, 131: 2481–2483CrossRefGoogle Scholar
  132. 132.
    Liu X, Li J, Hu C, Zhou Q, Zhang W, Hu M, Zhou J, Wang J. Angew Chem Int Ed, 2013, 52: 4805–4809CrossRefGoogle Scholar
  133. 133.
    Lee HS, Schultz PG. J Am Chem Soc, 2008, 130: 13194–13195CrossRefGoogle Scholar
  134. 134.
    Drienovská I, Rioz-Martínez A, Draksharapu A, Roelfes G. Chem Sci, 2015, 6: 770–776CrossRefGoogle Scholar
  135. 135.
    Liu X, Li J, Dong J, Hu C, Gong W, Wang J. Angew Chem Int Ed, 2012, 51: 10261–10265CrossRefGoogle Scholar
  136. 136.
    Warren JJ, Lancaster KM, Richards JH, Gray HB. J Inorg Biochem, 2012, 115: 119–126CrossRefGoogle Scholar
  137. 137.
    Whittaker MM, Whittaker JW. J Biol Chem, 1998, 273: 22188–22193CrossRefGoogle Scholar
  138. 138.
    Marino SF, Regan L. Chem Biol, 1999, 6: 649–655CrossRefGoogle Scholar
  139. 139.
    Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, De Beer S. Science, 2011, 334: 974–977CrossRefGoogle Scholar
  140. 140.
    Spatzal T, Aksoyoglu M, Zhang L, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O. Science, 2011, 334: 940–940CrossRefGoogle Scholar
  141. 141.
    Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC. Nature, 2010, 465: 115–119CrossRefGoogle Scholar
  142. 142.
    Lee SJ, McCormick MS, Lippard SJ, Cho US. Nature, 2013, 494: 380–384CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
  2. 2.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Laboratory of Non-coding RNA, Institute of BiophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations