Skip to main content
Log in

Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures

  • Reviews
  • Special Topic · Electrochromics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrochromic devices, which dynamically change color under applied potentials, are widely studied for use in energy-efficient smart windows. The operation of electrochromic materials and devices involves the gain or loss of electrons and simultaneous insertion/extraction of ions with opposite charges to balance the internal electric fields. The performance is therefore limited by kinetics of charge transport in the electrochromic materials as well as ion migration in the electrolyte, materials and at their interfaces. Nanostructured electrochromic materials have an extremely short charge transport distance facilitating charge transport in electrochromic devices and large specific surface area for interaction with electrolytes, and thus may provide fast charge and ions transport, high electrochemical activities and remarkable enhancement of electrochromic properties. The recent progress in application of nanostructures, including nanoparticles, 1D and 2D nanostructures, in metal oxide electrochromic materials and devices is reviewed. A perspective on the development trends in electrochromic materials and devices is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Granqvist CG. Handbook of Inorganic Electrochromic Materials. Amsterdam, The Netherlands: Elsevier, 1995

  2. Deb SK. Sol Energy Mat Sol C, 1995, 39: 191–201

    Article  CAS  Google Scholar 

  3. Deb SK. Sol Energy Mat Sol C, 2008, 92: 245–258

    Article  CAS  Google Scholar 

  4. Platt JR. J Chem Phys, 1961, 34: 862–863

    Article  CAS  Google Scholar 

  5. Wöhler F. Ann Phys, 1924, 2: 345–358

    Google Scholar 

  6. Glember O, Saurr H. Z Anorg Allg Chem, 1943, 252: 144–159

    Article  Google Scholar 

  7. Glember O, Naumann C. Z Anorg Allg Chem, 1951, 265: 288–302

    Article  Google Scholar 

  8. Deb SK. Appl Opt Supp, 1969, 3: 193–199

    Google Scholar 

  9. Deb SK. Appl Optics, 1969, 8: 192–195

    Article  Google Scholar 

  10. Deb SK. Philos Mag, 1973, 27: 801–822

    Article  CAS  Google Scholar 

  11. Yoo SJ, Lim JW, Sung YE, Jung YH, Choi HG, Kim DK. Appl Phys Lett, 2007, 90: 173126

    Article  Google Scholar 

  12. Wu MS, Yang CH. Appl Phys Lett, 2007, 91: 033109

    Article  Google Scholar 

  13. Ghicov A, Albu SP, Macak JM, Schmuki P. Small, 2008, 4: 1063–1066

    Article  CAS  Google Scholar 

  14. Cheng KC, Chen FR, Kai JJ. Sol Energy Mat Sol C, 2006, 90: 1156–1165

    Article  CAS  Google Scholar 

  15. Cheng KC, Chen FR, Kai JJ. Electrochim Acta, 2007, 52: 3330–3335

    Article  CAS  Google Scholar 

  16. Cinnsealach R, Boschloo G, Rao SN. Fitzmaurice D. Sol Energy Mat Sol C, 1998, 55: 215–223

    Article  CAS  Google Scholar 

  17. Gospodinova N, Terlemezyan L. Prog Polym Sci, 1998, 23: 1443–1484

    Article  CAS  Google Scholar 

  18. Andersson P, Forchheimer R, Tehrani P, Berggren M. Adv Funct Mater, 2007, 17: 3074–3082

    Article  CAS  Google Scholar 

  19. Campus F, Bonhôte P, Grätzel M, Heinen S, Walder L. Sol Energy Mat Sol C, 1999, 56: 281–297

    Article  CAS  Google Scholar 

  20. Shim GH, Han MG, Sharp-Norton JC. J Mater Chem, 2008, 18: 594–601

    Article  CAS  Google Scholar 

  21. Liao CC, Chen FR, Kai JJ. Sol Energy Mat Sol C, 2007, 91: 1282–1288

    Article  CAS  Google Scholar 

  22. Mortimer RJ, Dyer AL, Reynolds JR. Displays, 2006, 27: 2–18

    Article  CAS  Google Scholar 

  23. Granqvist CG, Azensa A, Hjelm A, Kullman L, Niklasson GA, Rönnow D, Mattsson MS, Veszelei M, Vaivars G. Sol Energy, 1998, 63: 199–216

    Article  CAS  Google Scholar 

  24. Granqvist CG. Sol Energy Mat Sol C, 2000, 60: 201–262

    Article  CAS  Google Scholar 

  25. Baetens R, Jelle BP, Gustavsen A. Sol Energy Mat Sol C, 2010, 94: 87–105

    Article  CAS  Google Scholar 

  26. Niklasson GA, Granqvist CG. J Mater Chem, 2006, 17: 127–156

    Article  Google Scholar 

  27. Gillaspie DT, Tenent RC, Dillon AC. J Mater Chem, 2010, 20: 9585–9592

    Article  CAS  Google Scholar 

  28. Granqvist CG. Sol Energy Mat Sol C, 2012, 99: 1–13

    Article  CAS  Google Scholar 

  29. Thakur VK, Ding G, Ma J, Lee PS, Lu X. Adv Mater, 2012, 24: 4071–4096

    Article  CAS  Google Scholar 

  30. Granqvist CG. Thin Solid Films, 2014, 564: 1–38

    Article  CAS  Google Scholar 

  31. Lampert CM. Opt Eng, 1984, 23: 92–97

    Article  CAS  Google Scholar 

  32. Lampert CM. Sol Energ Mat, 1984, 11: 1–27

    Article  CAS  Google Scholar 

  33. Svensson JSEM, Granqvist CG. Sol Energ Mat, 1984, 11: 29–34

    Article  CAS  Google Scholar 

  34. Mortimer RJ, Rosseinsky DR, Monk PMS. Electrochromic Materials and Devices. Weinheim: Wiley-Vch, 2015

    Google Scholar 

  35. Runnerstrom EL, Llordes A, Lounis SD, Milliron DJ. Chem Commun, 2014, 50: 10555–10572

    Article  CAS  Google Scholar 

  36. Wang JM, Sun XW, Jiao ZH, Materials, 2010, 3: 5029–5053

  37. Deepa M, Joshi AG, Srivastava AK, Shivaprasad SM, Agnihotry SA. J Electrochem Soc, 2006, 153: C365–C376

  38. Deepa M, Saxena TK, Singh DP, Sood KN, Agnihotry SA. Electrochim Acta, 2006, 51: 1974–1989

    Article  CAS  Google Scholar 

  39. Subrahmanyam A, Karuppasamy A. Sol Energy Mat Sol C, 2007, 91: 266–274

    Article  CAS  Google Scholar 

  40. Lee SH, Deshpande R, Parilla PA, Jones KM, To B, Mahan AH, Dillon AC. Adv Mater, 2006, 18: 763–766

    Article  CAS  Google Scholar 

  41. Li CP, Wolden CA, Dillon AC, Tenent RC. Sol Energy Mat Sol C, 2012, 9: 50–55

    Article  CAS  Google Scholar 

  42. Deshpande R, Lee SH, Mahan AH, Parilla PA, Jones KM, Norman AG, To B, Blackburn JL, Mitra S, Dillon AC. Solid State Ion, 2007, 178: 895–900

    Article  CAS  Google Scholar 

  43. Song YY, Gao ZD, Wang JH, Xia XH, Lynch R. Adv Funct Mater, 2011, 21: 1941–1946

    Article  CAS  Google Scholar 

  44. Costa C, Pinheiro C, Henriques I, Laia CAT. ACS Appl Mater Interfaces, 2012, 4: 1330-1340

    Article  CAS  Google Scholar 

  45. Dalavi DS, Devan RS, Patil RA, Patil RS, Ma RY, Sadale SB, Kim IY, Kim JH, Patil PS. J Mater Chem C, 2013, 1: 3722–3728

    Article  CAS  Google Scholar 

  46. Lee SH, Tracy CE, Yan Y, Pitts JR, Deb SK. Electrochem Solid-State Lett, 2005, 8: A188–A190

  47. Simon P, Gogotsi Y. Nat Mater, 2008, 7: 845–854

    Article  CAS  Google Scholar 

  48. Kang B, Ceder G. Nature, 2009, 458: 190–193

    Article  CAS  Google Scholar 

  49. Mortimer RJ. Chem Soc Rev, 1997, 26: 147–156

    Article  CAS  Google Scholar 

  50. Scherer MRJ, Li L, Cunha PMS, Scherman OA, Steiner U. Adv Mater, 2012, 24: 1217–1221

    Article  CAS  Google Scholar 

  51. Cong S, Tian YY, Li QW. Adv Mater, 2014, 26: 4260–4267

    Article  CAS  Google Scholar 

  52. Wang JM, Sun XW, Jiao ZH, Khoo E, Lee PS, Ma J, Demir HV. Nanoscale, 2011, 3: 4742–4745

    Article  CAS  Google Scholar 

  53. Wang JM, Khoo E, Ma J, Lee PS. Chem Commun, 2010, 46: 2468–2470

    Article  CAS  Google Scholar 

  54. Wang JM, Lee PS, Ma J. Cryst Growth Des, 2009, 9: 2293–2299

    Article  CAS  Google Scholar 

  55. Wang JM, Lee PS, Ma J. J Cryst Growth, 2009, 311: 316–319

    Article  CAS  Google Scholar 

  56. Ma DY, Wang HZ, Zhang QH, Li YG. J Mater Chem, 2012, 22: 16633–16639

    Article  CAS  Google Scholar 

  57. Zhang J, Tu JP, Xia XH, Wang XL, Gu CD. J Mater Chem, 2011, 21: 5492–5498

    Article  CAS  Google Scholar 

  58. Shim HS, Kim JW, Sung YE, Kim WB. Sol Energy Mat Sol C, 2009, 93: 2062–2068

    Article  CAS  Google Scholar 

  59. Zhou D, Shi F, Xie D, Wang DH, Xia XH, Wang XL, Gu CD, Tu JP. J Colloid Interf Sci, 2016, 465: 112–120

    Article  CAS  Google Scholar 

  60. Cai GF, Tu JP, Zhou D, Li L, Zhang JH, Wang XL, Gu CD. J Phys Chem C, 2014, 118: 6690–6696

    Article  CAS  Google Scholar 

  61. Wang JM, Khoo E, Lee PS, Ma J. J Phys Chem C, 2008, 112: 14306–14312

    Article  CAS  Google Scholar 

  62. Wang JM, Khoo E, Lee PS, Ma J. J Phys Chem C, 2009, 113: 9655–9658

    Article  CAS  Google Scholar 

  63. Ma DY, Shi GY, Wang HZ, Zhang QH, Li YG. J Mater Chem A, 2013, 1: 684–691

    Article  CAS  Google Scholar 

  64. Li HY, Wang X. Sci China Chem, 2015, 58: 1792–1799

    Article  CAS  Google Scholar 

  65. Zhuang XD, Mai YY, Wu DQ, Zhang F, Feng XL. Adv Mater, 2015, 27: 403–427

    Article  CAS  Google Scholar 

  66. Huang X, Tan CL, Yin ZY, Zhang H. Adv Mater, 2014, 26: 2185–2204

    Article  CAS  Google Scholar 

  67. Xiong SX, Li ZF, Gong M, Wang XQ, Fu JL, Shi YJ, Wu BH, Chu J. Electrochim Acta, 2014, 138: 101–108

    Article  CAS  Google Scholar 

  68. Zhang H. ACS Nano, 2015, 9: 9451–9469

    Article  CAS  Google Scholar 

  69. Zhao CC, Du FL, Wang JM. RSC Adv, 2015, 5: 38706–38711

    Article  CAS  Google Scholar 

  70. Miao RY, Zeng W. Mater Lett, 2016, 171: 200–203

    Article  CAS  Google Scholar 

  71. Min J, Liu J, Lei M, Wang WJ, Lu YK, Yang LY, Yang Q, Liu G, Su N. ACS Appl Mater Interfaces, 2016, 8: 780–791

    Article  CAS  Google Scholar 

  72. Velevska J, Ristova M. Sol Energy Mat Sol C, 2002, 73: 131–139

    Article  CAS  Google Scholar 

  73. Granqvist CG. Adv Mater, 2003, 15: 1789–1803

    Article  CAS  Google Scholar 

  74. Avendano E, Berggren L, Niklasson GA. Granqvist CG, Azens A. Thin Solid Films, 2006, 496: 30–36

    Article  CAS  Google Scholar 

  75. Redel E, Mlynarski J, Moir J, Jelle A, Huai C, Petrov S, Helander MG, Peiris FC, Freymann GV, Ozin GA. Adv Mater, 2012, 24: OP265–OP269

    Article  CAS  Google Scholar 

  76. Liu Q, Yan QL, Wu S, Wang JQ, Liu HK. Eletrochemistry, 2016, 84: 219–223

    Article  CAS  Google Scholar 

  77. Zhao CH, Fu JC, Zhang ZX, Xie EQ. RSC Adv, 2013, 3: 4018–4023

    Article  CAS  Google Scholar 

  78. Zhang JH, Cai GF, Zhou D, Tang H, Wang XL, Gu CD, Tu JP. J Mater Chem C, 2014, 2: 7013–7021

    Article  CAS  Google Scholar 

  79. Ma DY, Shi GY, Wang HZ, Zhang QH, Li YG. Nanoscale, 2013, 5: 4808–4815

    Article  CAS  Google Scholar 

  80. Zhao CC, Chen C, Du FL, Wang JM. RSC Adv, 2015, 5: 38533–38537

    Article  CAS  Google Scholar 

  81. Jiao ZH, Wang JM, Ke L, Liu XW, Demira HV, Yang MF, Sun XW. Electrochim Acta, 2012, 63: 153–160

    Article  CAS  Google Scholar 

  82. Jiao ZH, Wang JM, Ke L, Liu XW, Demira HV, Yang MF, Sun XW. J Nanosci Nanotechnol, 2012, 12: 3838–3847

    Article  CAS  Google Scholar 

  83. Li HZ, Wang JM, Shi GY, Wang HZ, Zhang QH, Li YG. RSC Adv, 2015, 5: 196–201

    Article  CAS  Google Scholar 

  84. Kuti LM, Bhella SS, Thangadurai V. Inorg Chem, 2009, 48: 6804–6811

    Article  CAS  Google Scholar 

  85. Li HZ, Wang JM, Shi QW, Zhang MW, Hou CY, Shi GY, Wang HZ, Zhang QH, Li YG, Chi QJ. Appl Surf Sci, 2016, 380: 281–287

    Article  CAS  Google Scholar 

  86. Ng CY, Razak KA, Lockman Z. Electrochim Acta, 2015, 178: 673–681

    Article  CAS  Google Scholar 

  87. Jiao ZH, Wang X, Wang JM, Ke L, Demir HV, Koh TW, Sun XW. Chem Commun, 2012, 48: 365–367

    Article  CAS  Google Scholar 

  88. Li HZ, Shi GY, Wang HZ, Zhang QH, Li YG. J Mater Chem A, 2014, 2: 11305–11310

    Article  CAS  Google Scholar 

  89. Yang CL, Wei HG, Guan LT, Guo J, Wang YR, Yan XR, Zhang X, Wei SY, Guo ZH. J Mater Chem A, 2015, 3: 14929–14941

    Article  CAS  Google Scholar 

  90. Wei HG, Ding DW, Yan XR, Guo J, Shao L, Chen HR, Sun LY, Colorado HA, Wei SY, Guo ZH. Electrochim Acta, 2014, 132: 58–66

    Article  CAS  Google Scholar 

  91. Zhu JH, Wei SY, Alexander MJ, Dang TD, Ho TC, Guo ZH. Adv Funct Mater, 2010, 20: 3076–3084

    Article  CAS  Google Scholar 

  92. Xiong SX, Phua SL, Dunn BS, Ma J, Lu XH. Chem Mater, 2010, 22: 255–260

    Article  CAS  Google Scholar 

  93. Ma DY, Shi GY, Wang HZ, Zhang QH, Li YG. J Mater Chem A, 2014, 2: 13541–13549

    Article  CAS  Google Scholar 

  94. Bechinger C, Ferrere S, Zaban A, Sprague J, Gregg BA. Nature, 1996, 383: 608–610

    Article  CAS  Google Scholar 

  95. Ahn KS, Yoo AJ, Kang MS, Lee JW, Sung YE. J Power Sources, 2007, 168: 533–536

    Article  CAS  Google Scholar 

  96. Dyer AL, Bulloch RH, Zhou YH, Kippelen B, Reynolds JR, Zhang FL. Adv Mater, 2014, 26: 4895–4900

    Article  CAS  Google Scholar 

  97. Wang JM, Zhang L, Yu L, Jiao ZH, Xie HQ, Lou XW, Sun XW. Nat Commun, 2014, 5: 4921

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61376009), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (2013-70), “Shu Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (13SG55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Wang, J. Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Sci. China Chem. 60, 54–62 (2017). https://doi.org/10.1007/s11426-016-0307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0307-x

Keywords

Navigation