Skip to main content
Log in

Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Three metal-organic frameworks, {[Mg2(MFDA)2(DMF)3]·0.5H2O} n (1), {[Ca(MFDA)(DMF)(H2O)]·0.5DMF} n (2) and [Ca(MFDA)(DMF)2] n (3) (DMF=N,N-dimethylformamide) have been synthesized by the solvothermal reactions between the ligand 9,9-dimethylfluorene-2,7-dicarboxylic acid (H2MFDA) and the corresponding metal salts, respectively. The single crystal X-ray structural analyses reveal that compounds 1–3 display three-dimensional structures based on the M(II)–O–C chains. It is interesting that the MFDA ligands in 1–3 have different dihedral angles between the two carboxylate groups ranging from 9.9(1)° to 41.8(2)°. All of compounds exhibit strong ligand-centered blue emissions under UV lights. Their thermal properties have also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Keeffe M, Yaghi OM. Chem Rev, 2012, 112: 675–702

    Article  Google Scholar 

  2. (a)_Li JR, Kuppler RJ, Zhou HC. Chem Soc Rev, 2009, 38: 1477–1504

    Article  Google Scholar 

  3. Lin JM, He CT, Liao PQ, Zhou DD, Zhang JP, Chen XM. Sci China Chem, 2016, 59: 970–974

    Article  CAS  Google Scholar 

  4. Li B, Chen B. Sci China Chem, 2016, 59: 965–969

    Article  CAS  Google Scholar 

  5. Gao WY, Thiounn T, Wojtas L, Chen YS, Ma S. Sci China Chem, 2016, 59: 980–983

    Article  CAS  Google Scholar 

  6. (a)_Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen SBT, Hupp JT. Chem Soc Rev, 2009, 38: 1450–1459

    Article  Google Scholar 

  7. Liu D, Wang X, Chen YP, Yuan S, Zhong C, Zhou HC. Sci China Chem, 2016, 59: 975–979

    Article  CAS  Google Scholar 

  8. (a)_Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Chem Rev, 2012, 112: 1105–1125

    Article  Google Scholar 

  9. Cheng T, Hu J, Zhou C, Wang Y, Zhang M. Sci China Chem, 2016, 59: 929–947

    Article  CAS  Google Scholar 

  10. Wang T, Jia Y, Chen Q, Feng R, Tian S, Hu TL, Bu XH. Sci China Chem, 2016, 59: 959–964

    Article  CAS  Google Scholar 

  11. Wang S, Ma R, Chen Z, Li Y, Cao T, Zhou C, Bai J. Sci China Chem, 2016, 59: 948–958

    Article  CAS  Google Scholar 

  12. Farha OK, Hupp JT. Acc Chem Res, 2010, 43: 1166–1175

    Article  CAS  Google Scholar 

  13. Paz FAA, Klinowski J, Vilela SMF, Tomé JPC, Cavaleiro JAS, Rocha J. Chem Soc Rev, 2012, 41: 1088–1110

    Article  Google Scholar 

  14. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM. Science, 2002, 295: 469–472

    Article  CAS  Google Scholar 

  15. Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM. Proc Natl Acad Sci USA, 2006, 103: 10186–10191

    Article  CAS  Google Scholar 

  16. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID. Science, 1999, 283: 1148–1150

    Article  CAS  Google Scholar 

  17. Du L, Yang S, Xu L, Min H, Zheng B. CrystEngComm, 2014, 16: 5520–5523

    Article  CAS  Google Scholar 

  18. Campbell MG, Sheberla D, Liu SF, Swager TM, Dinca M. Angew Chem Int Ed, 2015, 54: 4349–4352

    Article  CAS  Google Scholar 

  19. Volkringer C, Loiseau T, Marrot J, Férey G. CrystEngComm, 2009, 11: 58–60

    Article  CAS  Google Scholar 

  20. Williams CA, Blake AJ, Wilson C, Hubberstey P, Schröder M. Cryst Growth Des, 2008, 8: 911–922

    Article  CAS  Google Scholar 

  21. Volkringer C, Marrot J, Férey G, Loiseau T. Cryst Growth Des, 2008, 8: 685–689

    Article  CAS  Google Scholar 

  22. Sun YX, Sun WY. Chin Chem Lett, 2014, 25: 823–828

    Article  CAS  Google Scholar 

  23. Zhu HF, Zhang ZH, Sun WY, Okamura T, Ueyama N. Cryst Growth Des, 2005, 5: 177–182

    Article  CAS  Google Scholar 

  24. Liang PC, Liu HK, Yeh CT, Lin CH, Zima V. Cryst Growth Des, 2011, 11: 699–708

    Article  CAS  Google Scholar 

  25. Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM. Science, 2012, 336: 1018–1023

    Article  CAS  Google Scholar 

  26. Ramaswamy P, Wong NE, Gelfand BS, Shimizu GKH. J Am Chem Soc, 2015, 137: 7640–7643

    Article  CAS  Google Scholar 

  27. Mallick A, Saha S, Pachfule P, Roy S, Banerjee R. J Mater Chem, 2010, 20: 9073–9080

    Article  CAS  Google Scholar 

  28. Banerjee D, Zhang Z, Plonka AM, Li J, Parise JB. Cryst Growth Des, 2012, 12: 2162–2165

    Article  CAS  Google Scholar 

  29. Miller SR, Alvarez E, Fradcourt L, Devic T, Wuttke S, Wheatley PS, Steunou N, Bonhomme C, Gervais C, Laurencin D, Morris RE, Vimont A, Daturi M, Horcajada P, Serre C. Chem Commun, 2013, 49: 7773–7775

    Article  CAS  Google Scholar 

  30. Su S, Qin C, Guo Z, Guo H, Song S, Deng R, Cao F, Wang S, Li G, Zhang H. CrystEngComm, 2011, 13: 2935–2941

    Article  CAS  Google Scholar 

  31. Li A, Li L, Lin Z, Song L, Wang ZH, Chen Q, Yang T, Zhou XH, Xiao HP, Yin XJ. New J Chem, 2015, 39: 2289–2295

    Article  CAS  Google Scholar 

  32. Li L, Chen Q, Niu Z, Zhou X, Yang T, Huang W. J Mater Chem C, 2016, 4: 1900–1905

    Article  CAS  Google Scholar 

  33. Li L, Wang Z, Chen Q, Zhou X, yang T, Zhao Q, Huang W. J Solid State Chem, 2015, 231: 47–52

    Article  CAS  Google Scholar 

  34. Zhou X, Song L, Li L, Yang T. J Mol Structure, 2016, 1119: 296–300

    Article  CAS  Google Scholar 

  35. SAINT-Plus. Version 6. 02. Madison, WI: Bruker Analytical X-ray System Inc., 1999

  36. Sheldrick GM. SADABSs. An empirical absorption correction program. Madison, WI: Bruker Analytical X-ray Systems Inc., 1996

    Google Scholar 

  37. Sheldrick GM. Acta Crystallogr A: Found Crystallogr, 2008, 64: 112–122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61136003, 61575096, 51173081), the Ministry of Education of China (IRT1148), the Natural Science Foundation of Jiangsu Province (BM2012010, BK20151512), Priority Academic Program Development of Jiangsu Higher Education Institutions (YX03001), Specialized Research Fund for the Doctoral Program of Higher Education (20113223110005), and the National Basic Research Program of China (2012CB933301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhui Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Chen, Q., Li, L. et al. Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties. Sci. China Chem. 60, 115–121 (2017). https://doi.org/10.1007/s11426-016-0291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0291-3

Keywords

Navigation