Skip to main content
Log in

All-solid-state electrochromic devices based on WO3||NiO films: material developments and future applications

  • Mini Reviews
  • Special Topic · Electrochromics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse. Electrochromic (EC) devices have been extensively studied because of their commercial applications in smart windows of green buildings, display devices and thermal control of equipments. In this review, a basic EC device design is presented based on useful oxides and solid-state electrolytes. We focus on the state-of-the-art research activities related to the structures of tungsten oxide (WO3) and nickel oxide (NiO), summarizing the strategies to improve their EC performances and further applications of devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Granqvist CG. Nat Mater, 2006, 5: 89–90

    Article  CAS  Google Scholar 

  2. Granqvist CG. Adv Mater, 2003, 15: 1789–1803

    Article  CAS  Google Scholar 

  3. Granqvist CG. Sol Energ Mat Sol C, 2012, 99: 1–13

    Article  CAS  Google Scholar 

  4. Wen RT, Granqvist CG, Niklasson GA. Nat Mater, 2015, 14: 996–1001

    Article  CAS  Google Scholar 

  5. Xia XH, Chao DL, Qi XY, Xiong QQ, Zhang YQ, Tu JP, Zhang H, Fan HJ. Nano Lett, 2013, 13: 4562–4568

    Article  CAS  Google Scholar 

  6. Granqvist CG. Handbook of Inorganic Electrochromic Materials. Amsterdam: Elsevier, 1995: 1–15

  7. Cai GF, Tu JP, Zhou D, Wang XL, Gu CD. Sol Energ Mat Sol C, 2014, 124: 103–110

    Article  CAS  Google Scholar 

  8. Granqvist CG. Thin Solid Films, 2014, 564: 1–38

    Article  CAS  Google Scholar 

  9. Platt JR. J Chem Phys, 1961, 34: 862–863

    Article  CAS  Google Scholar 

  10. Deb SK. Appl Optics, 1969, 8: 192–195

    Article  Google Scholar 

  11. Deb SK. Philos Mags, 1973, 27: 801–822

    Article  CAS  Google Scholar 

  12. Deb SK. Sol Energ Mat Sol C, 1995, 39: 191–201

    Article  CAS  Google Scholar 

  13. Schoot CJ, Ponjee JJ, van Dam HT, van Doorn RA, Bolwijn PT. Appl Phys Lett, 1973, 23: 64–65

    Article  CAS  Google Scholar 

  14. Monk P, Mortimer R, Rosseinsky D. Electrochromism: Fundamentals and Applications. Veinheim: Wiley-VCH, 1999: 42–47

    Google Scholar 

  15. Mortimer RJ. Electrochim Acta, 1999, 44: 2971–2981

    Article  CAS  Google Scholar 

  16. Granqvist CG. Electrochim Acta, 1999, 44: 3005–3015

    Article  CAS  Google Scholar 

  17. Granqvist CG. Sol Energ Mat Sol C, 2000, 60: 201–262

    Article  CAS  Google Scholar 

  18. Green M. Chem Ind, 1996: 641–644

    Google Scholar 

  19. Rosseinsky DR, Mortimer RJ. Adv Mater, 2001, 13: 783–793

    Article  CAS  Google Scholar 

  20. Zhang J, Tu JP, Xia XH, Wang XL, Gu CD. J Mater Chem, 2011, 21: 5492–5498

    Article  CAS  Google Scholar 

  21. Zhou D, Xie D, Shi F, Wang DH, Ge X, Xia XH, Wang XL, Gu CD, Tu JP. J Colloid Interf Sci, 2015, 460: 200–208

    Article  CAS  Google Scholar 

  22. Cai GF, Tu JP, Zhou D, Li L, Zhang JH, Wang XL, Gu CD. CrystEngComm, 2014, 16: 6866–6872

    Article  CAS  Google Scholar 

  23. Kharraz M, Azens A, Kullman L, Granqvist CG. Thin Solid Films, 1997, 295: 117–121

    Article  Google Scholar 

  24. Liu Y, Lv Y, Tang ZB, He LG, Liu XY. Electrochim Acta, 2016, 189: 184–189

    Article  CAS  Google Scholar 

  25. Wang CM, Lin SY. J Solid State Electr, 2006, 10: 255–259

    Article  CAS  Google Scholar 

  26. Nang Dinh N, Minh Quyen N, Chung DN, Zikova M, Truong VV. Sol Energ Mat Sol C, 2011, 95: 618–623

    Article  CAS  Google Scholar 

  27. Patil RA, Devan RS, Liou Y, Ma YR. Sol Energ Mat Sol C, 2016, 147: 240–245

    Article  CAS  Google Scholar 

  28. Xia XH, Tu JP, Zhang J, Wang XL, Zhang WK, Huang H. Electrochim Acta, 2008, 53: 5721–5724

    Article  CAS  Google Scholar 

  29. Cai GF, Tu JP, Gu CD, Zhang JH, Chen J, Zhou D, Shi SJ, Wang XL. J Mater Chem A, 2013, 1: 4286–4292

    Article  CAS  Google Scholar 

  30. Zhang JH, Tu JP, Zhou D, Tang H, Li L, Wang XL, Gu CD. J Mater Chem C, 2014, 2: 10409–10417

    Article  CAS  Google Scholar 

  31. Xia XH, Tu JP, Zhang J, Xiang JY, Wang XL, Zhao XB. Sol Energ Mat Sol C, 2010, 94: 386–389

    Article  CAS  Google Scholar 

  32. Xia XH, Tu JP, Zhang J, Xiang JY, Wang XL, Zhao XB. ACS Appl Mater Interfaces, 2010, 2: 186–192

    Article  CAS  Google Scholar 

  33. Goldner RB, Haas TE, Arntz FO, Slaven S, Wong KK, Wilkens B, Shepard C, Lanford W. Appl Phys Lett, 1993, 62: 1699–1701

    Article  CAS  Google Scholar 

  34. Gratzel M. Nature, 2001, 409: 575–576

    Article  CAS  Google Scholar 

  35. Santos L, Wojcik P, Pinto JV, Elangovan E, Viegas J, Pereira L, Martins R, Fortunato E. Adv Electron Mater, 2015, 1: 1400002

    Article  Google Scholar 

  36. Lee SH, Deshpande R, Parilla PA, Jones KM, To B, Mahan AH, Dillon AC. Adv Mater, 2006, 18: 763–766

    Article  CAS  Google Scholar 

  37. Song YY, Gao ZD, Wang JH, Xia XH, Lynch R. Adv Funct Mater, 2011, 21: 1941–1946

    Article  CAS  Google Scholar 

  38. Cai GF, Tu JP, Zhou D, Zhang JH, Wang XL, Gu CD. Sol Energ Mat Sol C, 2014, 122: 51–58

    Article  CAS  Google Scholar 

  39. Yamada Y, Tabata K, Yashima T. Sol Energ Mat Sol C, 2007, 91: 29–37

    Article  CAS  Google Scholar 

  40. Wang LY, Yuan L, Wu XF, Wu J, Hou CM, Feng SH. RSC Adv, 2014, 4: 47670–47676

    Article  CAS  Google Scholar 

  41. Pauporté T. J Electrochem Soc, 2002, 149: C539–C545

    Article  Google Scholar 

  42. Zhang J, Wang XL, Xia XH, Gu CD, Zhao ZJ, Tu JP. Electrochim Acta, 2010, 55: 6953–6958

    Article  CAS  Google Scholar 

  43. Zhao BW, Zhang X, Dong GB, Wang H, Yan H. Ionics, 2015, 21: 2879–2887

    Article  CAS  Google Scholar 

  44. Patel KJ, Panchal CJ, Desai MS, Mehta PK. Mater Chem Phys, 2010, 124: 884–890

    Article  CAS  Google Scholar 

  45. Dimitrova Z, Gogova D. Mater Res Bull, 2005, 40: 333–340

    Article  CAS  Google Scholar 

  46. Khoo E, Lee PS, Ma J. J Eur Ceram Soc, 2010, 30: 1139–1144

    Article  CAS  Google Scholar 

  47. Cai GF, Darmawan P, Cui MQ, Chen JW, Wang X, Eh ALS, Magdassi S, Lee PS. Nanoscale, 2016. 8: 348–357

  48. Li HZ, Chen JW, Cui MQ, Cai GF, Eh ALS, Lee PS, Wang HZ, Zhang QH, Li YG. J Mater Chem C, 2016, 4: 33–38

    Article  CAS  Google Scholar 

  49. Zhang J, Wang XL, Xia XH, Gu CD, Tu JP. Sol Energ Mat Sol C, 2011, 95: 2107–2112

    Article  CAS  Google Scholar 

  50. Xiao W, Liu WT, Mao XH, Zhu H, Wang DH. J Mater Chem A, 2013, 1: 1261–1269

    Article  CAS  Google Scholar 

  51. Arvizu MA, Triana CA, Stefanov BI, Granqvist CG, Niklasson GA. Sol Energ Mat Sol C, 2014, 125: 184–189

    Article  CAS  Google Scholar 

  52. Zhou D, Shi F, Xie D, Wang DH, Xia XH, Wang XL, Gu CD, Tu JP. J Colloid Interf Sci, 2016, 465: 112–120

    Article  CAS  Google Scholar 

  53. Faughnan BW, Crandall RS. Appl Phys Lett, 1977, 31: 834–836

    Article  CAS  Google Scholar 

  54. Fu C, Foo C, Lee PS. Electrochim Acta, 2014, 117: 139–144

    Article  CAS  Google Scholar 

  55. Cai GF, Zhou D, Xiong QQ, Zhang JH, Wang XL, Gu CD, Tu JP. Sol Energ Mat Sol C, 2013, 117: 231–238

    Article  CAS  Google Scholar 

  56. Song XW, Dong GB, Gao FY, Xiao Y, Liu QR, Diao XG. Vacuum, 2015, 111: 48–54

    Article  CAS  Google Scholar 

  57. Sialvi MZ, Mortimer RJ, Wilcox GD, Teridi AM, Varley TS, Wijayantha KGU, Kirk CA. ACS Appl Mater Interfaces, 2013, 5: 5675–5682

    Article  CAS  Google Scholar 

  58. Denayer J, Bister G, Simonis P, Colson P, Maho A, Aubry P, Vertruyen B, Henrist C, Lardot V, Cambier F, Cloots R. Appl Surf Sci, 2014, 321: 61–69

    Article  CAS  Google Scholar 

  59. Moulki H, Park DH, Min BK, Kwon H, Hwang SJ, Choy JH, Toupance T, Campet G, Rougier A. Electrochim Acta, 2012, 74: 46–52

    Article  CAS  Google Scholar 

  60. Xia XH, Tu JP, Zhang J, Wang XL, Zhang WK, Huang H. Sol Energ Mat Sol C, 2008, 92: 628–633

    Article  CAS  Google Scholar 

  61. Zhou JL, Luo G, Wei YX, Zheng JM, Xu CY. Electrochim Acta, 2015, 186: 182–191

    Article  CAS  Google Scholar 

  62. Zhao CC, Du FL, Wang JM. RSC Adv, 2015, 5: 38706–38711

    Article  CAS  Google Scholar 

  63. Cai GF, Wang X, Cui MQ, Darmawan P, Wang JX, Eh ALS, Lee PS. Nano Energy, 2015, 12: 258–267

    Article  CAS  Google Scholar 

  64. Patil RA, Devan RS, Lin JH, Ma YR, Patil PS, Liou Y. Sol Energ Mat Sol C, 2013, 112: 91–96

    Article  CAS  Google Scholar 

  65. Zhang JH, Cai GF, Zhou D, Tang H, Wang XL, Gu CD, Tu JP. J Mater Chem C, 2014, 2: 7013–7021

    Article  CAS  Google Scholar 

  66. Cai GF, Tu JP, Zhou D, Li L, Zhang JH, Wang XL, Gu CD. J Phys Chem C, 2014, 118: 6690–6696

    Article  CAS  Google Scholar 

  67. Cai GF, Tu JP, Zhang J, Mai YJ, Lu Y, Gu CD, Wang XL. Nanoscale, 2012, 4: 5724–5730

    Article  CAS  Google Scholar 

  68. Sonavane AC, Inamdar AI, Dalavi DS, Deshmukh HP, Patil PS. Electrochim Acta, 2010, 55: 2344–2351

    Article  CAS  Google Scholar 

  69. Wang SC, Liu KY, Huang JL. Thin Solid Films, 2011, 520: 1454–1459

    Article  CAS  Google Scholar 

  70. Tajima K, Yamada Y, Bao S, Okada M, Yoshimura K. J Electrochem Soc, 2010, 157: J92–J96

  71. Zhang XP, Zhang HK, Li Q, Luo HL. IEEE Electr Device Lett, 2000, 21: 215–217

    Article  CAS  Google Scholar 

  72. Zhou YL, Diao XG, Dong GB, Wu ZH, Dong DM, Wang M. Ionics, 2016, 22: 25–32

    Article  CAS  Google Scholar 

  73. Yang HG, Wang C, Zhu KG, Diao XG, Wang HY, Cui Y, Wang TM. Chinese Phys Lett, 2008, 25: 740

    Article  CAS  Google Scholar 

  74. Zhang J, Tu JP, Xia XH, Qiao Y, Lu Y. Sol Energ Mat Sol C, 2009, 93: 1840–1845

    Article  CAS  Google Scholar 

  75. Alesanco Y, Palenzuela J, Viñuales A, Cabañero G, Grande HJ, Odriozola I. ChemElectroChem, 2015, 2: 218–223

    Article  CAS  Google Scholar 

  76. Ponez L, Sentanin FC, Majid SR, Arof AK, Pawlicka A. Mol Cryst Liq Cryst, 2012, 554: 239–251

    Article  CAS  Google Scholar 

  77. Raphael E, Avellaneda CO, Aegerter MA, Silva MM, Pawlicka A. Mol Cryst Liq Cryst, 2012, 554: 264–272

    Article  CAS  Google Scholar 

  78. Gonçalves A, Costa C, Pereira S, Correia N, Silva M, Barbosa P, Rodrigues L, Henriques I, Martins R, Fortunato E. Polym Advan Technol, 2012, 23: 791–795

    Article  Google Scholar 

  79. Thakur VK, Ding GQ, Ma J, Lee PS, Lu XH. Adv Mater, 2012, 24: 4071–4096

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Innovative Research Team in University of Ministry of Education of China (IRT13037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangping Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Xie, D., Xia, X. et al. All-solid-state electrochromic devices based on WO3||NiO films: material developments and future applications. Sci. China Chem. 60, 3–12 (2017). https://doi.org/10.1007/s11426-016-0279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0279-3

Keywords

Navigation