Skip to main content
Log in

Synthesis and near infrared electrochromic properties of metallodithiolene complexes

  • Articles
  • Special Topic · Electrochromics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Four metallodithiolene complexes [4,8-bis(octyloxy)-1,3,5,7-tetrathia]·di[1,1′-bis(diphenylphosphino)ferrocene·palladium(II)] (3), [4,8-bis(octyloxy)-1,3,5,7-tetrathia]di[1,3-bis(diphenylphosphino)propane·nickel(II)] (4), [4,8-bis(octyloxy)-1,3,5,7-tetrathia] ·[1,1′-bis(diphenylphosphino)ferrocene·palladium(II)]·[1,3-bis(diphenylphosphino)propane·nickel(II)] (5) and di[4,8-bis (octyloxy)-1,3,5,7-tetrathia]·[1,1′-bis(diphenylphosphino)ferrocene·palladium(II)]·nickel(II) (6) were synthesized and the near-infrared (NIR) electrochromic properties were studied. The spectroelectrochemical spectra and the electrochromic parameters such as optical contrast, switching time, optical density change, electrochromic efficiency and optical attenuation of complexes 3–6 were investigated in detail. The symmetric binuclear complex 4 showed relatively high electrochromic efficiency of 63.0 and 75.4 cm2/C both in the two oxidation states. The complexes exhibited excellent electroactive/electrochromic stability characterized by chronoamperometry (>4000 cyclic switches).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrew MM, Simon RB, Jason R. Michael DW. Chem Mater, 2000, 12: 2523–2524

    Article  Google Scholar 

  2. Xun SD, Le Clair G, Zhang JD, Chen X, Gao JP, Wang ZY. Org Lett, 2006, 8: 1697–1700

    Article  CAS  Google Scholar 

  3. Mortimer RJ, Dyer AL, Reynolds JR. Displays, 2006, 27: 2–18

    Article  CAS  Google Scholar 

  4. Krebs FC. Nat Mater, 2008, 7: 766–767

    Article  CAS  Google Scholar 

  5. Meng F, Hervault YM, Shao Q, Hu B, Norel L, Rigaut S, Chen X. Nat Commm, 2014, 5: 3023–3032

    Article  Google Scholar 

  6. Pochorovski I, Diederich F. Acc Chem Res, 2014, 47: 2096–2105

    Article  CAS  Google Scholar 

  7. Cai JW, Zhao P, Niu HJ, Lian YF, Wang C, Bai XD, Wang W. Polym Chem, 2013, 4: 1183–1192

    Article  CAS  Google Scholar 

  8. Patra A, Bendikov M, Chand S. Acc Chem Res, 2014, 47: 1465-1474

    Article  CAS  Google Scholar 

  9. Cui J, Xu Z. Chem Commun, 2014, 50: 3986–3988

    Article  CAS  Google Scholar 

  10. Niklasson GA, Granqvist CG. J Mater Chem, 2007, 17: 127–156

    Article  CAS  Google Scholar 

  11. Oliveira S, Afonso ML, Dias SIG, Santos IC, Henriques RT, Rabaç, S, Almeida M. Eur J Inorg Chem, 2013, 18: 3133–3136

    Article  Google Scholar 

  12. Reizo K. Chem Rev, 2004, 104: 5319–5346

    Article  Google Scholar 

  13. Ma XC, Wu YS, Wen HL, Niu HJ, Wang C, Qin CL, Bai XD, Lei L, Wang W. RSC Adv, 2016, 6: 4564–4575

    Article  CAS  Google Scholar 

  14. Niklasson GA, Granqvist CG. J Mater Chem, 2007, 17: 127–156

    Article  CAS  Google Scholar 

  15. Tang JH, Yao CJ, Cui BB, Zhong YW. Chem Rec, 2016, 16: 754–767

    Article  CAS  Google Scholar 

  16. Shankar S, Lahav M, Boom ME. J Am Chem Soc, 2015, 137: 4050- 4053

    Article  CAS  Google Scholar 

  17. Aragoni MC, Arca M, Devillanova FA. Inorg Chem Commun, 2007, 10: 191–194

    Article  CAS  Google Scholar 

  18. Schrauzer GN, Mayweg V. J Am Chem Soc, 1962, 84: 3221

    Article  CAS  Google Scholar 

  19. Sarangi R, George SD, Rudd DJ, Szilagyi RK, Ribas X, Rovira C, Almeida M, Hodgson KO, Hedman B, Solomon EI. J Am Chem Soc, 2007, 129: 2316–2326

    Article  CAS  Google Scholar 

  20. Aragoni MC, Arca M, Demartin F. J Am Chem Soc, 1999, 121: 7098–7107

    Article  CAS  Google Scholar 

  21. Chandrasekaran P, Greene AF, Lillich K, Capone S, Mague JT, Debeer S, Donahue JP. Inorg Chem, 2014, 53: 9192–9205

    Article  CAS  Google Scholar 

  22. Dalgleish S, Matsushita MM, Hu LG, Li B, Yoshikawa H, Awaga K. J Am Chem Soc, 2012, 134: 12742–12750

    Article  CAS  Google Scholar 

  23. Bruno G, Almeida M, Artizzu F, Dias JC, Mercuri ML, Pilia L, Rovira C, Ribas X, Serpe A, Deplano P. Dalton Trans, 2010, 39: 4566–4574

    Article  CAS  Google Scholar 

  24. Perochon R, Davidson P, Rouzière S, Camerel F, Piekara-Sady L, Guizouarn T, Formigué M. J Mater Chem, 2011, 21: 1416–1422

    Article  CAS  Google Scholar 

  25. Dalgleish S, Robertson N. Chem Commun, 2009, 39: 5826–5828

    Article  Google Scholar 

  26. Oliveira S, Afonso ML, Dias SIG, Santos IC, Henriques RT, Rabaça S, Almeida M. Eur J Inorg Chem, 2013, 18: 3133–3136

    Article  Google Scholar 

  27. Espa D, Marchiò L, Pilia L, Mercuri ML, Artizzu F, Serpe A, Simão D, Almeida M, Pizzotti M, Deplano P. Dalton Trans, 2012, 41: 3485–3493

    Article  CAS  Google Scholar 

  28. Liu B, Qiao WQ, Wang ZY. RSC Adv, 2015, 5: 6815–6822

    Article  CAS  Google Scholar 

  29. Pilia L, Pizzotti M, Tessore F, Robertson N. Inorg Chem, 2014, 53: 4517–4526

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21134005, 21474102, 21474105) and the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqiang Qiao or Zhiyuan Wang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Qiao, W., Liu, B. et al. Synthesis and near infrared electrochromic properties of metallodithiolene complexes. Sci. China Chem. 60, 77–83 (2017). https://doi.org/10.1007/s11426-016-0252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0252-x

Keywords

Navigation