Advertisement

Science China Chemistry

, Volume 60, Issue 2, pp 275–283 | Cite as

Strain induced polymorphism and band structure modulation in low-temperature 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene single crystal

  • Jianfeng Chen
  • Wen Shi
  • Yuqian Jiang
  • Dong WangEmail author
  • Zhigang ShuaiEmail author
Articles
  • 200 Downloads

Abstract

Organic semiconductors are inherently soft, making it possible to increase their mobilities by strains. Such a unique feature can be exploited directly in flexible electronics for improved device performance. The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative, C8-BTBT is one of the best small-molecule hole transport materials. Here, we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations. We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K. Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT, and polymorphism was identified in the shear process. The band width enhancement is up to 8% under 2% of compressive strain along the x direction, and 14% under 4% of tensile strain along the y direction. The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs, where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively. These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates, for example, by bending the substrates.

Keywords

charge transport shear strain polymorphism band structure modulation flexible electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21273124, 21290190, 21290191 and 91333202), the Innovative Research Groups of the National Science Foundation of China (21421064) and the National Basic Research Program of China (2013CB933503 and 2015CB655002). Computational resources are provided by the Tsinghua Supercomputing Center.

References

  1. 1.
    Rogers JA, Bao Z. J Polym Sci A Polym Chem, 2002, 40: 3327–3334CrossRefGoogle Scholar
  2. 2.
    Gelinck GH, Huitema HEA, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten JBPH, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, van Rens BJE, de Leeuw DM. Nat Mater, 2004, 3: 106–110CrossRefGoogle Scholar
  3. 3.
    Subramanian V, Frechet JMJ, Chang PC, Huang DC, Lee JB, Molesa SE, Murphy AR, Redinger DR, Volkman SK. Proc IEEE, 2005, 93: 1330–1338CrossRefGoogle Scholar
  4. 4.
    Baude PF, Ender DA, Haase MA, Kelley TW, Muyres DV, Theiss SD. Appl Phys Lett, 2003, 82: 3964–3966CrossRefGoogle Scholar
  5. 5.
    Klauk H, Zschieschang U, Pflaum J, Halik M. Nature, 2007, 445: 745–748CrossRefGoogle Scholar
  6. 6.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP. Science, 2000, 290: 2123–2126CrossRefGoogle Scholar
  7. 7.
    Crone B, Dodabalapur A, Lin YY, Filas RW, Bao Z, La Duca A, Sarpeshkar R, Katz HE, Li W. Nature, 2000, 403: 521–523CrossRefGoogle Scholar
  8. 8.
    Someya T, Dodabalapur A, Huang J, See KC, Katz HE. Adv Mater, 2010, 22: 3799–3811CrossRefGoogle Scholar
  9. 9.
    Lipomi DJ, Vosgueritchian M, Tee BCK, Hellstrom SL, Lee JA, Fox CH, Bao Z. Nat Nanotech, 2011, 6: 788–792CrossRefGoogle Scholar
  10. 10.
    Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao Z. Nat Mater, 2010, 9: 859–864CrossRefGoogle Scholar
  11. 11.
    Kuribara K, Wang H, Uchiyama N, Fukuda K, Yokota T, Zschieschang U, Jaye C, Fischer D, Klauk H, Yamamoto T, Takimiya K, Ikeda M, Kuwabara H, Sekitani T, Loo YL, Someya T. Nat Commun, 2012, 3: 723CrossRefGoogle Scholar
  12. 12.
    Roberts ME, Mannsfeld SCB, Queralto N, Reese C, Locklin J, Knoll W, Bao Z. Proc Natl Acad Scis, 2008, 105: 12134–12139CrossRefGoogle Scholar
  13. 13.
    Berggren M, Richter-Dahlfors A. Adv Mater, 2007, 19: 3201–3213CrossRefGoogle Scholar
  14. 14.
    Meijer EJ, de Leeuw DM, Setayesh S, van Veenendaal E, Huisman BH, Blom PWM, Hummelen JC, Scherf U, Klapwijk TM. Nat Mater, 2003, 2: 678–682CrossRefGoogle Scholar
  15. 15.
    Sirringhaus H. Adv Mater, 2005, 17: 2411–2425CrossRefGoogle Scholar
  16. 16.
    Allard S, Forster M, Souharce B, Thiem H, Scherf U. Angew Chem Int Ed, 2008, 47: 4070–4098CrossRefGoogle Scholar
  17. 17.
    Anthony JE. Angew Chem Int Ed, 2008, 47: 452–483CrossRefGoogle Scholar
  18. 18.
    Kwak D, Lim JA, Kang B, Lee WH, Cho K. Adv Funct Mater, 2013, 23: 5224–5231CrossRefGoogle Scholar
  19. 19.
    Sokolov AN, Cao Y, Johnson OB, Bao Z. Adv Funct Mater, 2012, 22: 175–183CrossRefGoogle Scholar
  20. 20.
    Fu YT, Yi YP, Coropceanu V, Risko C, Aziz SG, Brédas JL. Sci China Chem, 2014, 57: 1330–1339CrossRefGoogle Scholar
  21. 21.
    He Z, Chen J, Sun Z, Szulczewski G, Li D. Organic Electrons, 2012, 13: 1819–1826CrossRefGoogle Scholar
  22. 22.
    Chen J, Tee CK, Shtein M, Anthony J, Martin DC. J Appl Phys, 2008, 103: 114513–114513CrossRefGoogle Scholar
  23. 23.
    Kushida T, Nagase T, Naito H. Organic Electrons, 2011, 12: 2140–2143CrossRefGoogle Scholar
  24. 24.
    Chae GJ, Jeong SH, Baek JH, Walker B, Song CK, Seo JH. J Mater Chem C, 2013, 1: 4216–4221CrossRefGoogle Scholar
  25. 25.
    Hwang DK, Fuentes-Hernandez C, Berrigan JD, Fang Y, Kim J, Potscavage WJ, Cheun H, Sandhage KH, Kippelen B. J Mater Chem, 2012, 22: 5531–5537CrossRefGoogle Scholar
  26. 26.
    Lee WY, Oh JH, Suraru SL, Chen WC, Würthner F, Bao Z. Adv Funct Mater, 2011, 21: 4173–4181CrossRefGoogle Scholar
  27. 27.
    Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z. Nature, 2011, 480: 504–508CrossRefGoogle Scholar
  28. 28.
    Diao Y, Tee BCK, Giri G, Xu J, Kim DH, Becerril HA, Stoltenberg RM, Lee TH, Xue G, Mannsfeld SCB, Bao Z. Nat Mater, 2013, 12: 665–671CrossRefGoogle Scholar
  29. 29.
    Diao Y, Zhou Y, Kurosawa T, Shaw L, Wang C, Park S, Guo Y, Reinspach JA, Gu K, Gu X, Tee BCK, Pang C, Yan H, Zhao D, Toney MF, Mannsfeld SCB, Bao Z. Nat Commun, 2015, 6: 7955CrossRefGoogle Scholar
  30. 30.
    Becerril HA, Roberts ME, Liu Z, Locklin J, Bao Z. Adv Mater, 2008, 20: 2588–2594CrossRefGoogle Scholar
  31. 31.
    Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB, Chen J, Nordlund D, Toney MF, Huang J, Bao Z. Nat Commun, 2014, 5: 3005Google Scholar
  32. 32.
    Takimiya K, Osaka I, Mori T, Nakano M. Acc Chem Res, 2014, 47: 1493–1502CrossRefGoogle Scholar
  33. 33.
    Zheng X, Geng H, Yi Y, Li Q, Jiang Y, Wang D, Shuai Z. Adv Funct Mater, 2014, 24: 5531–5540CrossRefGoogle Scholar
  34. 34.
    Takimiya K, Kunugi Y, Konda Y, Ebata H, Toyoshima Y, Otsubo T. J Am Chem Soc, 2006, 128: 3044–3050CrossRefGoogle Scholar
  35. 35.
    Shi W, Chen J, Xi J, Wang D, Shuai Z. Chem Mater, 2014, 26: 2669–2677CrossRefGoogle Scholar
  36. 36.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. J Comput Chem, 2004, 25: 1157–1174CrossRefGoogle Scholar
  37. 37.
    Wang D, Tang L, Long M, Shuai Z. J Phys Chem C, 2011, 115: 5940–5946CrossRefGoogle Scholar
  38. 38.
    Gaussian 09, Revision E.01, Frisch, M. J; Trucks, G. W; Schlegel, H. B; Scuseria, G. E; Robb, M. A; Cheeseman, J. R; Scalmani, G; Barone, V; Mennucci, B; Petersson, G. A; Nakatsuji, H; Caricato, M; Li, X; Hratchian, H. P; Izmaylov, A. F; Bloino, J; Zheng, G; Sonnenberg, J. L; Hada, M; Ehara, M; Toyota, K; Fukuda, R; Hasegawa, J; Ishida, M; Nakajima, T; Honda, Y; Kitao, O; Nakai, H; Vreven, T; Montgomery, J. A., Jr; Peralta, J. E; Ogliaro, F; Bearpark, M; Heyd, J. J; Brothers, E; Kudin, K. N; Staroverov, V. N; Kobayashi, R; Normand, J; Raghavachari, K; Rendell, A; Burant, J. C; Iyengar, S. S; Tomasi, J; Cossi, M; Rega, N; Millam, J. M; Klene, M; Knox, J. E; Cross, J. B; Bakken, V; Adamo, C; Jaramillo, J; Gomperts, R; Stratmann, R. E; Yazyev, O; Austin, A. J; Cammi, R; Pomelli, C; Ochterski, J. W; Martin, R. L; Morokuma, K; Zakrzewski, V. G; Voth, G. A; Salvador, P; Dannenberg, J. J; Dapprich, S; Daniels, A. D; Farkas, Ö; Foresman, J. B; Ortiz, J. V; Cioslowski, J; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009Google Scholar
  39. 39.
    Bayly CI, Cieplak P, Cornell W, Kollman PA. J Phys Chem, 1993, 97: 10269–10280CrossRefGoogle Scholar
  40. 40.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J Am Chem Soc, 1995, 117: 5179–5197CrossRefGoogle Scholar
  41. 41.
    Plimpton S. J Comp Phys, 1995, 117: 1–19CrossRefGoogle Scholar
  42. 42.
    Nose S. J Chem Phys, 1984, 81: 511–519CrossRefGoogle Scholar
  43. 43.
    Hoover WG. Phys Rev A, 1985, 31: 1695–1697CrossRefGoogle Scholar
  44. 44.
    Blöchl PE. Phys Rev B, 1994, 50: 17953–17979CrossRefGoogle Scholar
  45. 45.
    Grimme S. J Comput Chem, 2006, 27: 1787–1799CrossRefGoogle Scholar
  46. 46.
    Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186CrossRefGoogle Scholar
  47. 47.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Phys Rev B, 1992, 46: 6671–6687CrossRefGoogle Scholar
  48. 48.
    Nan G, Li Z. Phys Chem Chem Phys, 2012, 14: 9451–9459CrossRefGoogle Scholar
  49. 49.
    Diao Y, Lenn KM, Lee WY, Blood-Forsythe MA, Xu J, Mao Y, Kim Y, Reinspach JA, Park S, Aspuru-Guzik A, Xue G, Clancy P, Bao Z, Mannsfeld SCB. J Am Chem Soc, 2014, 136: 17046–17057CrossRefGoogle Scholar
  50. 50.
    Wang LJ, Li QK, Shuai Z. J Chem Phys, 2008, 128: 194706–194706CrossRefGoogle Scholar
  51. 51.
    Kubo T, Häusermann R, Tsurumi J, Soeda J, Okada Y, Yamashita Y, Akamatsu N, Shishido A, Mitsui C, Okamoto T, Yanagisawa S, Matsui H, Takeya J. Nat Commun, 2016, 7: 11156CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.National Center for Nanoscience and TechnologyBeijingChina
  3. 3.Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science (BNLMS), Institute of ChemistryChinese Academy of SciencesBeijingChina
  4. 4.Collaborative Innovation Center of Chemistry for Energy MaterialsXiamen UniversityXiamenChina

Personalised recommendations