Skip to main content
Log in

Light weight, mechanically strong and biocompatible α-chitin aerogels from different aqueous alkali hydroxide/urea solutions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Light weight and mechanically strong α-chitin aerogels were fabricated using the sol-gel/self-assembly method from α-chitin in different aqueous alkali hydroxide (KOH, NaOH and LiOH)/urea solutions. All of the α-chitin solutions exhibited temperature-induced rapid gelation behavior. 13C nuclear magnetic resonance (NMR) spectra revealed that the aqueous alkali hydroxide/ urea solutions are non-derivatizing solvents for α-chitin. Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and cross-polarization magic angle spinning (CP/MAS) 13C NMR confirmed that α-chitin has a stable aggregate structure after undergoing dissolution and regeneration. Subsequently, nanostructured α-chitin aerogels were fabricated by regeneration from the chitin solutions in ethanol and then freeze-drying from t-BuOH. These α-chitin aerogels exhibited high porosity (87% to 94%), low density (0.09 to 0.19 g/cm3), high specific surface area (419 to 535 m2/g) and large pore volume (2.7 to 3.8 cm3/g). Moreover, the α-chitin aerogels exhibited good mechanical properties under compression and tension models. In vitro studies showed that mBMSCs cultured on chitin hydrogels have good biocompatibility. These nanostructured α-chitin aerogels may be useful for various applications, such as catalyst supports, carbon aerogel precursors and biomedical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nair LS, Laurencin CT. Prog Polym Sci, 2007, 32: 762–798

    Article  CAS  Google Scholar 

  2. Wang S, Lu A, Zhang LN. Prog Polym Sci, 2016, 53: 169–206

    Article  CAS  Google Scholar 

  3. Bartlett DH, Azam F. Science, 2005, 310: 1775–1777

    Article  CAS  Google Scholar 

  4. Wan ACA, Tai BCU. Biotechnol Adv, 2013, 31: 1776–1785

    Article  CAS  Google Scholar 

  5. Arun KR, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi KP, Nair SV, Jayakumar R. ACS Appl Mater Interf, 2015, 7: 9399–9409

    Article  Google Scholar 

  6. Rinaudo M. Prog Polym Sci, 2006, 31: 603–632

    Article  CAS  Google Scholar 

  7. Liu XX, Wang YF, Zhang NZ, Shanks RA, Liu HS, Tong Z, Chen L. Chin J Polym Sci, 2014, 32: 108–114

    Article  CAS  Google Scholar 

  8. Yu YY, Guo L, Wang W, Wu J, Yuan Z. Sci China Chem, 2015, 58: 1866–1874

    Article  CAS  Google Scholar 

  9. Pillai C, Paul W, Sharma CP. Prog Polym Sci, 2009, 34: 641–678

    Article  CAS  Google Scholar 

  10. Yan N, Chen X. Nature, 2015, 524: 155–157

    Article  CAS  Google Scholar 

  11. Ifuku S, Saimoto H. Nanoscale, 2012, 4: 3308–3318

    Article  CAS  Google Scholar 

  12. Austin PR. Solvents for and purification of chitin. US Patent, 3892731. 1975-07-01

  13. Sannan T, Kurita K, Iwakura Y. Die Makromolekulare Chemie, 1975, 176: 1191–1195

    Article  CAS  Google Scholar 

  14. Feng F, Liu Y, Hu K. Carbohyd Res, 2004, 339: 2321–2324

    Article  CAS  Google Scholar 

  15. Einbu A, Naess SN, Elgsaeter A, Vårum KM. Biomacromolecules, 2004, 5: 2048–2054

    Article  CAS  Google Scholar 

  16. Tamura H, Nagahama H, Tokura S. Cellulose, 2006, 13: 357–364

    Article  CAS  Google Scholar 

  17. Gagnaire D, Germain JS, Vincendon M. Die Makromolekulare Chemie, 1982, 183: 593–601

    Article  CAS  Google Scholar 

  18. Kumar MNR. React Funct Polym, 2000, 46: 1–27

    Article  CAS  Google Scholar 

  19. Xie H, Zhang S, Li S. Green Chem, 2006, 8: 630–633

    Article  CAS  Google Scholar 

  20. Wu Y, Sasaki T, Irie S, Sakurai K. Polymer, 2008, 49: 2321–2327

    Article  CAS  Google Scholar 

  21. Qin Y, Lu X, Sun N, Rogers RD. Green Chem, 2010, 12: 968–971

    Article  CAS  Google Scholar 

  22. Sharma M, Mukesh C, Mondal D, Prasad K. RSC Adv, 2013, 3: 18149–18155

    Article  CAS  Google Scholar 

  23. Mukesh C, Mondal D, Sharma M, Prasad K. Carbohyd Polym, 2014, 103: 466–471

    Article  CAS  Google Scholar 

  24. Ladet S, David L, Domard A. Nature, 2008, 452: 76–79

    Article  CAS  Google Scholar 

  25. Shi Z, Gao H, Feng J, Ding B, Cao X, Kuga S, Wang Y, Zhang L, Cai J. Angew Chem Int Ed, 2014, 53: 5380–5384

    Article  CAS  Google Scholar 

  26. Torres JG, Femmer T, Laporte LD, Tigges T, Rahimi K, Gremse F, Zafarnia F, Lederle W, Ifuku S, Wessling M. Adv Mater, 2015, 27: 2989–2995

    Article  Google Scholar 

  27. Rejinold SN, Chennazhi KP, Tamura H, Nair SV, Rangasamy J. ACS Appl Mater Interf, 2011, 3: 3654–3665

    Article  Google Scholar 

  28. Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD. Green Chem, 2016, 18: 53–75

    Article  Google Scholar 

  29. Cai J, Zhang L. Macromol Biosci, 2005, 5: 539–548

    Article  CAS  Google Scholar 

  30. Hu X, Du Y, Tang Y, Wang Q, Feng T, Yang J, Kennedy JF. Carbohyd Polym, 2007, 70: 451–458

    Article  CAS  Google Scholar 

  31. Chang C, Chen S, Zhang L. J Mater Chem, 2011, 21: 3865–3871

    Article  CAS  Google Scholar 

  32. Fan M, Hu Q. Carbohyd Res, 2009, 344: 944–947

    Article  CAS  Google Scholar 

  33. Ding B, Cai J, Huang J, Zhang L, Chen Y, Shi X, Du Y, Kuga S. J Mater Chem, 2012, 22: 5801–5809

    Article  CAS  Google Scholar 

  34. Duan B, Gao H, He M, Zhang L. ACS Appl Mater Interf, 2014, 6: 19933–19942

    Article  CAS  Google Scholar 

  35. Huang Y, Zhong Z, Duan B, Zhang L, Yang Z, Wang Y, Ye Q. J Mater Chem B, 2014, 2: 3427–3432

    Article  CAS  Google Scholar 

  36. Duan B, Zheng X, Xia Z, Fan X, Guo L, Liu J, Wang Y, Ye Q, Zhang L. Angew Chem Int Ed, 2015, 54: 1–6

    Article  Google Scholar 

  37. Fang Y, Duan B, Lu A, Liu M, Liu H, Xu X, Zhang L. Biomacromolecules, 2015, 16: 1410–1417

    Article  CAS  Google Scholar 

  38. Cai J, Huang J, Zhang L. Solvent compounds for chitin dissolution. China Patent, 201310034088.4. 2013-04-24

  39. Terbojevich M, Carraro C, Cosani A, Marsano E. Carbohyd Res, 1988, 180: 73–86

    Article  CAS  Google Scholar 

  40. Heux L, Brugnerotto J, Desbrières J, Versali MF, Rinaudo M. Biomacromolecules, 2000, 1: 746–751

    Article  CAS  Google Scholar 

  41. Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K. Macromolecules, 1997, 30: 5849–5855

    Article  CAS  Google Scholar 

  42. Nijenhuis KT, Winter HH. Macromolecules, 1989, 22: 411–414

    Article  Google Scholar 

  43. Cai J, Zhang L. Biomacromolecules, 2006, 7: 183–189

    Article  CAS  Google Scholar 

  44. Arvidson S, Lott J, Mc Allister J, Zhang J, Bates F, Lodge T, Sammler R, Li Y. Macromolecules, 2012, 46: 300–309

    Article  Google Scholar 

  45. Minke R, Blackwell J. J Mol Biol, 1978, 120: 167–181

    Article  CAS  Google Scholar 

  46. Focher B, Naggi A, Torri G, Cosani A, Terbojevich M. Carbohyd Polym, 1992, 17: 97–102

    Article  CAS  Google Scholar 

  47. Sikorski P, Hori R, Wada M. Biomacromolecules, 2009, 10: 1100–1105

    Article  CAS  Google Scholar 

  48. Ogawa Y, Kimura S, Wada M, Kuga S. J Struct Biol, 2010, 171: 111–116

    Article  CAS  Google Scholar 

  49. Tanner SF, Chanzy H, Vincendon M, Roux JC, Gaill F. Macromolecules, 1990, 23: 3576–3583

    Article  CAS  Google Scholar 

  50. Cárdenas G, Cabrera G, Taboada E, Miranda SP. J Appl Polym Sci, 2004, 93: 1876–1885

    Article  Google Scholar 

  51. Kameda T, Miyazawa M, Ono H, Yoshida M. Macromol Biosci, 2005, 5: 103–106

    Article  CAS  Google Scholar 

  52. Brugnerotto J, Lizardi J, Goycoolea F, Argüelles-Monal W, Desbrieres J, Rinaudo M. Polymer, 2001, 42: 3569–3580

    Article  CAS  Google Scholar 

  53. Massiot D, Touzo B, Trumeau D, Coutures J, Virlet J, Florian P, Grandinetti P. Solid State Nucl Mag, 1996, 6: 73–83

    Article  CAS  Google Scholar 

  54. Tsioptsias C, Michailof C, Stauropoulos G, Panayiotou C. Carbohydr Polym, 2009, 76: 535–540

    Article  CAS  Google Scholar 

  55. Silva SS, Duarte ARC, Carvalho AP, Mano JF, Reis RL. Acta Biomaterialia, 2011, 7: 1166–1172

    Article  CAS  Google Scholar 

  56. Heath L, Zhu L, Thielemans W. ChemSusChem, 2013, 6: 537–544

    Article  CAS  Google Scholar 

  57. Tsutsumi Y, Koga H, Qi ZD, Saito T, Isogai A. Biomacromolecules, 2014, 15: 4314–4319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Cai.

Electronic supplementary material

11426_2016_205_MOESM1_ESM.doc

Light weight, mechanically strong and biocompatible α-chitin aer-ogels from different aqueous alkali hydroxide/urea solutions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, B., Zhao, D., Song, J. et al. Light weight, mechanically strong and biocompatible α-chitin aerogels from different aqueous alkali hydroxide/urea solutions. Sci. China Chem. 59, 1405–1414 (2016). https://doi.org/10.1007/s11426-016-0205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0205-5

Keywords

Navigation