Skip to main content
Log in

When does a diblock copolymer probe the interfacial rheological effect?

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lateral diffusion of diblock copolymer residing on the interfaces between two immiscible liquids is investigated at single molecular level. Fluorescence correlation spectroscopy was used to study the diffusion of fluorescence-labeled diblock copolymer, polystyrene-b-polyisoprene, at the interface formed between two immiscible liquids. The interfaces are formed between N,N-dimethylformamide (DMF) and a few immiscible liquids, n-alkane and polyisoprene. Interfacial diffusion coefficient of the diblock copolymer probe is found to decrease monotonously with the increase of the molecular length of the interface constituting liquids. The decrease of diffusion coefficient follows the prediction by Einstein relation using the viscosity of the constituting liquids as the variables only for interfaces between DMF and very small n-alkanes. For interfaces formed between DMF and bigger alkanes and especially between DMF and polyisoprene, the diffusion coefficient is much higher than the calculated value, indicating that the probe molecule starts to probe the much less viscous interfacial region because the interfacial width gets larger, whose thickness is comparable to the molecule size of the liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simons K, Ikonen E. Nature, 1997, 387: 569–572

    Article  CAS  Google Scholar 

  2. Janmey PA, Stossel TP. J Biol Chem, 1989, 264: 4825–4831

    CAS  Google Scholar 

  3. Wong JSS, Hong L, Bae SC, Granick S. Macromolecules, 2011, 44: 3073–3076

    Article  CAS  Google Scholar 

  4. Mabry JN, Kastantin M, Schwartz DK. ACS Nano, 2015, 9: 7237–7247

    Article  CAS  Google Scholar 

  5. Monserud JH, Schwartz DK. Phys Rev Lett, 2016, 116: 098303

    Article  Google Scholar 

  6. Yu C, Granick S. Langmuir, 2014, 30: 14538–14544

    Article  CAS  Google Scholar 

  7. Bae SC, Granick S. Annu Rev Phys Chem, 2007, 58: 353–374

    Article  CAS  Google Scholar 

  8. Zhao J, Granick S. J Am Chem Soc, 2004, 126: 6242–6243

    Article  CAS  Google Scholar 

  9. Xiao HY, Zhen Z, Sun HQ, Cao XL, Li ZQ, Song XW, Cui XH, Liu XH. Sci China Chem, 2010, 53: 945–949

    Article  CAS  Google Scholar 

  10. Popov P, Steinkerchner L, Mann EK. Phys Rev E, 2015, 91: 053308

    Article  Google Scholar 

  11. Oslanec R, Brown HR. Macromolecules, 2003, 36: 5839–5844

    Article  CAS  Google Scholar 

  12. Vladkov M, Barrat JL. Macromolecules, 2007, 40: 3797–3804

    Article  CAS  Google Scholar 

  13. Hu X, Jiang Z, Narayanan S, Jiao X, Sandy AR, Sinha SK, Lurio LB, Lal J. Phys Rev E, 2006, 74: 010602

    Article  Google Scholar 

  14. Gennes PG. Comptes Rendus De L Academie Des Sciences Serie Ii, 1989, 308: 1401–1403

    Google Scholar 

  15. Gennes PG. Comptes Rendus Hebdomadaires Des Seances De l Academie Des Sciences B, 1979, 288: 219–210

    Google Scholar 

  16. Ge T, Grest GS, Robbins MO. ACS Macro Lett, 2013, 2: 882–886

    Article  CAS  Google Scholar 

  17. Wang D, Pevzner L, Li C, Peneva K, Li CY, Chan DYC, Müllen K, Mezger M, Koynov K, Butt HJ. Phys Rev E, 2013, 87: 012403

    Article  Google Scholar 

  18. Yang J, Zhao J, Han CC. Macromolecules, 2008, 41: 7284–7286

    Article  CAS  Google Scholar 

  19. Negishi M, Sakaue T, Yoshikawa K. Phys Rev E, 2010, 81: 020901

    Article  Google Scholar 

  20. Negishi M, Seto H, Hase M, Yoshikawa K. Langmuir, 2008, 24: 8431–8434

    Article  CAS  Google Scholar 

  21. Skaug MJ, Mabry JN, Schwartz DK. J Am Chem Soc, 2014, 136: 1327–1332

    Article  CAS  Google Scholar 

  22. Yu C, Guan J, Chen K, Bae SC, Granick S. ACS Nano, 2013, 7: 9735–9742

    Article  CAS  Google Scholar 

  23. Sriram I, Walder R, Schwartz DK. Soft Matter, 2012, 8: 6000–6003

    Article  CAS  Google Scholar 

  24. Goebel A, Lunkenheimer K. Langmuir, 1997, 13: 369–372

    Article  CAS  Google Scholar 

  25. Kessel CR, Granick S. Langmuir, 1991, 7: 532–538

    Article  CAS  Google Scholar 

  26. Wang S, Zhao J. J Chem Phys, 2007, 126: 091104–091104

    Article  Google Scholar 

  27. Zheng ZL, Li DS, Yang JF, Zhao J. Sci China Chem, 2014, 57: 389–396

    Article  CAS  Google Scholar 

  28. Liu R, Gao X, Adams J, Oppermann W. Macromolecules, 2005, 38: 8845–8849

    Article  CAS  Google Scholar 

  29. Wohlfarth C. Viscosity of Pure Organic Liquids and Binary Liquid Mixtures. Heidelberg: Springer, 2009

    Google Scholar 

  30. Abdel-Goad M, Pyckhout-Hintzen W, Kahle S, Richter D, Fetters LJ. Macromolecules, 2004, 37: 8135–8144

    Article  CAS  Google Scholar 

  31. Yang Q, Zhao J. Langmuir, 2011, 27: 11757–11760

    Article  CAS  Google Scholar 

  32. Wang W, Zhang C, Wang S, Zhao J. Macromolecules, 2007, 40: 9564–9569

    Article  CAS  Google Scholar 

  33. Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B. J Am Chem Soc, 2009, 131: 12650–12656

    Article  CAS  Google Scholar 

  34. Danov KD, Dimova R, Pouligny B. Phys Fluids, 2000, 12: 2711–2722

    Article  CAS  Google Scholar 

  35. Schuld N, Wolf BA. Polymer-solvent interaction parameters. In: Brandrup J, Immergut EH, Grulke EA, Eds. Polymer Handbook. Weinheim: John Wiley & Sons, 1999

    Google Scholar 

  36. Grulke EA. Solubility parameter values. In: Brandrup J, Immergut EH, Grulke EA, Eds. Polymer Handbook. Weinheim: John Wiley & Sons, 1999

    Google Scholar 

  37. Wang L, Zhao J, Han CC. Polymer, 2008, 49: 2153–2159

    Article  CAS  Google Scholar 

  38. Zarbakhsh A, Bowers J, Webster JRP. Langmuir, 2005, 21: 11596–11598

    Article  CAS  Google Scholar 

  39. Mitrinovic DM, Tikhonov AM, Li M, Huang ZQ, Schlossman ML. Phys Rev Lett, 2000, 85: 582–585

    Article  CAS  Google Scholar 

  40. Fleer G, Cohen Stuart MA, Scheutjens JMHM. Polymers at Interfaces. Heidelberg: Springer, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhao, J. When does a diblock copolymer probe the interfacial rheological effect?. Sci. China Chem. 59, 1330–1334 (2016). https://doi.org/10.1007/s11426-016-0181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0181-8

Keywords

Navigation