Skip to main content
Log in

Rational design of multi-targeting ruthenium- and platinum-based anticancer complexes

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Platinum-based anticancer drugs, including cisplatin and its analogues, have played important roles in the clinical treatment of solid tumors over the past 38 years. However, poor selectivity, high toxicity and intrinsic or acquired drug resistance profoundly limit their application, which encourages the development of novel transition metal-based anticancer agents with different mechanisms of action. To this end, transition metal complexes that can simultaneously act on more than one target, termed as single-molecule multi-targeting complexes, have attracted increasing attention because of their enhanced efficacy and diminished chance of drug resistance. In this review, we systematically discuss the recent progress in the development of platinum- and ruthenium-based anticancer agents, in particular the rational design of platinum and ruthenium complexes with multi-targeting features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenberg B, Vancamp L, Trosko JE, Mansour VH. Nature, 1969, 222: 385–386

    Article  CAS  Google Scholar 

  2. Canetta R, Bragman K, Smaldone L, Rozencweig M. Cancer Treat Rev, 1988, 15: 17–32

    Article  Google Scholar 

  3. Caussanel JP, Levi F, Brienza S, Misset JL, Itzhaki M, Adam R, Milano G, Hecquet B, Mathe G. J Natl Cancer Inst, 1990, 82: 1046–1050

    Article  CAS  Google Scholar 

  4. Jakupec MA, Galanski M, Keppler BK. Rev Physiol Bioch P, 2003, 146: 1–53

    Article  CAS  Google Scholar 

  5. Wheate NJ, Walker S, Craig GE, Oun R. Dalton Trans, 2010, 39: 8113–8127

    Article  CAS  Google Scholar 

  6. Zhao Y, Farrer NJ, Li H, Butler JS, McQuitty RJ, Habtemariam A, Wang F, Sadler PJ. Angew Chem Int Ed, 2013, 52: 13633–13637

    Article  CAS  Google Scholar 

  7. Johnstone TC, Suntharalingam K, Lippard SJ. Chem Rev, 2016, 116: 3436–3486

    Article  CAS  Google Scholar 

  8. Garbutcheon-Singh KB, Leverett P, Myers S, Aldrich-Wright JR. Dalton Trans, 2013, 42: 918–926

    Article  CAS  Google Scholar 

  9. Wilson JJ, Lippard SJ. Chem Rev, 2014, 114: 4470–4495

    Article  CAS  Google Scholar 

  10. Kelland L. Nat Rev Cancer, 2007, 7: 573–584

    Article  CAS  Google Scholar 

  11. Zhao Y, Woods JA, Farrer NJ, Robinson KS, Pracharova J, Kasparkova J, Novakova O, Li H, Salassa L, Pizarro AM, Clarkson GJ, Song L, Brabec V, Sadler PJ. Chem Eur J, 2013, 19: 9578–9591

    Article  CAS  Google Scholar 

  12. Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tucek J, Zboril R. Chem Rev, 2016, 116: 5338–5431

    Article  CAS  Google Scholar 

  13. Butler JS, Sadler PJ. Curr Opin Chem Biol, 2013, 17: 175–188

    Article  CAS  Google Scholar 

  14. Wang X, Guo Z. Chem Soc Rev, 2013, 42: 202–224

    Article  CAS  Google Scholar 

  15. Berger I, Nazarov AA, Hartinger CG, Groessl M, Valiahdi SM, Jakupec MA, Keppler BK. ChemMedChem, 2007, 2: 505–514

    Article  CAS  Google Scholar 

  16. Gust R, Beck W, Jaouen G, Schönenberger H. Coordin Chem Rev, 2009, 253: 2742–2759

    Article  CAS  Google Scholar 

  17. Mejri A, Vardanega D, Tangour B, Gharbi T, Picaud F. J Phys Chem B, 2015, 119: 604–611

    Article  CAS  Google Scholar 

  18. Kumar A, Huo S, Zhang X, Liu J, Tan A, Li S, Jin S, Xue X, Zhao YY, Ji T, Han L, Liu H, Zhang XN, Zhang J, Zou G, Wang T, Tang S, Liang XJ. ACS Nano, 2014, 8: 4205–4220

    Article  CAS  Google Scholar 

  19. Min Y, Mao C, Xu D, Wang J, Liu Y. Chem Commun, 2010, 46: 8424–8426

    Article  CAS  Google Scholar 

  20. Zhou D, Cong Y, Qi Y, He S, Xiong H, Wu Y, Xie Z, Chen X, Jing X, Huang Y. Biomater Sci, 2015, 3: 182–191

    Article  CAS  Google Scholar 

  21. Cheng Q, Shi H, Huang H, Cao Z, Wang J, Liu Y. Chem Commun, 2015, 51: 17536–17539

    Article  CAS  Google Scholar 

  22. Kesavan A, Ilaiyaraja P, Sofi Beaula W, Veena Kumari V, Sugin Lal J, Arunkumar C, Anjana G, Srinivas S, Ramesh A, Rayala SK, Ponraju D, Venkatraman G. Eur J Pharm Biopharm, 2015, 96: 255–263

    Article  CAS  Google Scholar 

  23. Bottini M, Rosato N, Bottini N. Biomacromolecules, 2011, 12: 3381–3393

    Article  CAS  Google Scholar 

  24. Bergamo A, Sava G. Dalton Trans, 2007, 36: 1267–1272

    Article  Google Scholar 

  25. Bruijnincx PC, Sadler PJ. Curr Opin Chem Biol, 2008, 12: 197–206

    Article  CAS  Google Scholar 

  26. Bruijnincx PCA, Sadler PJ. Controlling platinum, ruthenium, and osmium reactivity for anticancer drug design. In: Rudi van E, Colin DH, Eds. Advances in Inorganic Chemistry, Vol 61: Metal Ion Controlled Reactivity. Cambridge: Academic Press, 2009. 1–62

  27. Habtemariam A, Melchart M, Fernández R, Parsons S, Oswald IDH, Parkin A, Fabbiani FPA, Davidson JE, Dawson A, Aird RE, Jodrell DI, Sadler PJ. J Med Chem, 2006, 49: 6858–6868

    Article  CAS  Google Scholar 

  28. Hartinger CG, Dyson PJ. Chem Soc Rev, 2009, 38: 391–401

    Article  CAS  Google Scholar 

  29. Liu Z, Habtemariam A, Pizarro AM, Fletcher SA, Kisova A, Vrana O, Salassa L, Bruijnincx PCA, Clarkson GJ, Brabec V, Sadler PJ. J Med Chem, 2011, 54: 3011–3026

    Article  CAS  Google Scholar 

  30. Peacock AFA, Parsons S, Sadler PJ. J Am Chem Soc, 2007, 129: 3348–3357

    Article  CAS  Google Scholar 

  31. Wang F, Habtemariam A, van der Geer EPL, Fernandez R, Melchart M, Deeth RJ, Aird R, Guichard S, Fabbiani FPA, Lozano-Casal P, Oswald IDH, Jodrell DI, Parsons S, Sadler PJ. Proc Natl Acad Sci, 2005, 102: 18269–18274

    Article  CAS  Google Scholar 

  32. Almodares Z, Lucas SJ, Crossley BD, Basri AM, Pask CM, Hebden AJ, Phillips RM, McGowan PC. Inorg Chem, 2014, 53: 727–736

    Article  CAS  Google Scholar 

  33. Enzo Alessio BSP, Giovanni Mestroni BSP, Alberta Bergamo BSP, Gianni Sava BSP. Curr Top Med Chem, 2004, 4: 1525–1535

    Article  Google Scholar 

  34. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK. J Inorg Biochem, 2006, 100: 891–904

    Article  CAS  Google Scholar 

  35. Wermuth CG. Drug Discov Today, 2004, 9: 826–827

    Article  Google Scholar 

  36. Roth BL, Sheffler DJ, Kroeze WK. Nat Rev Drug Discov, 2004, 3: 353–359

    Article  CAS  Google Scholar 

  37. Larder B, Kemp S, Harrigan P. Science, 1995, 269: 696–699

    Article  CAS  Google Scholar 

  38. Glass G. Nat Rev Drug Discov, 2004, 3: 731–732

    Article  CAS  Google Scholar 

  39. Morphy R, Rankovic Z. J Med Chem, 2005, 48: 6523–6543

    Article  CAS  Google Scholar 

  40. Edwards IR, Aronson JK. Lancet, 2000, 356: 1255–1259

    Article  CAS  Google Scholar 

  41. Tao L, Zhu F, Xu F, Chen Z, Jiang YY, Chen YZ. Pharmacol Res, 2015, 102: 123–131

    Article  CAS  Google Scholar 

  42. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM. N Engl J Med, 2007, 356: 125–134

    Article  CAS  Google Scholar 

  43. Baselga J. Science, 2006, 312: 1175–1178

    Article  CAS  Google Scholar 

  44. Kurzwernhart A, Kandioller W, Bartel C, Bächler S, Trondl R, Mühlgassner G, Jakupec MA, Arion VB, Marko D, Keppler BK, Hartinger CG. Chem Commun, 2012, 48: 4839–4841

    Article  CAS  Google Scholar 

  45. Dhar S, Lippard SJ. Proc Natl Acad Sci USA, 2009, 106: 22199–22204

    Article  CAS  Google Scholar 

  46. Cheng Q, Shi H, Wang H, Min Y, Wang J, Liu Y. Chem Commun, 2014, 50: 7427–7430

    Article  CAS  Google Scholar 

  47. Pathak RK, Marrache S, Choi JH, Berding TB, Dhar S. Angew Chem Int Ed, 2014, 53: 1963–1967

    Article  CAS  Google Scholar 

  48. Suntharalingam K, Song Y, Lippard SJ. Chem Commun, 2014, 50: 2465–2468

    Article  CAS  Google Scholar 

  49. Ma L, Ma R, Wang Y, Zhu X, Zhang J, Chan HC, Chen X, Zhang W, Chiu SK, Zhu G. Chem Commun, 2015, 51: 6301–6304

    Article  CAS  Google Scholar 

  50. Novohradsky V, Zerzankova L, Stepankova J, Vrana O, Raveendran R, Gibson D, Kasparkova J, Brabec V. J Inorg Biochem, 2014, 140: 72–79

    Article  CAS  Google Scholar 

  51. Morphy R, Kay C, Rankovic Z. Drug Discov Today, 2004, 9: 641–651

    Article  CAS  Google Scholar 

  52. Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, Won H, Wong W, Berger M, de Stanchina E, Barratt DG, Cosulich S, Klinowska T, Rosen N, Shokat KM. Nature, 2016, 534: 272–276

    CAS  Google Scholar 

  53. Ang WH, Khalaila I, Allardyce CS, Juillerat-Jeanneret L, Dyson PJ. J Am Chem Soc, 2005, 127: 1382–1383

    Article  CAS  Google Scholar 

  54. Castonguay A, Doucet C, Juhas M, Maysinger D. J Med Chem, 2012, 55: 8799–8806

    Article  CAS  Google Scholar 

  55. Pettinari R, Pettinari C, Marchetti F, Skelton BW, White AH, Bonfili L, Cuccioloni M, Mozzicafreddo M, Cecarini V, Angeletti M, Nabissi M, Eleuteri AM. J Med Chem, 2014, 57: 4532–4542

    Article  CAS  Google Scholar 

  56. Ji L, Zheng W, Lin Y, Wang X, Lü S, Hao X, Luo Q, Li X, Yang L, Wang F. Eur J Med Chem, 2014, 77: 110–120

    Article  CAS  Google Scholar 

  57. Cohen P. Nat Rev Drug Discov, 2002, 1: 309–315

    Article  CAS  Google Scholar 

  58. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA. N Engl J Med, 2004, 350: 2129–2139

    Article  CAS  Google Scholar 

  59. Muhsin M, Graham J, Kirkpatrick P. Nat Rev Drug Discov, 2003, 2: 515–516

    Article  CAS  Google Scholar 

  60. Stamos J, Sliwkowski MX, Eigenbrot C. J Biol Chem, 2002, 277: 46265–46272

    Article  CAS  Google Scholar 

  61. Morris RE, Aird RE, del Socorro Murdoch P, Chen H, Cummings J, Hughes ND, Parsons S, Parkin A, Boyd G, Jodrell DI, Sadler PJ. J Med Chem, 2001, 44: 3616–3621

    Article  CAS  Google Scholar 

  62. Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE, Chen H, Sadler PJ, Jodrell DI. Br J Cancer, 2002, 86: 1652–1657

    Article  CAS  Google Scholar 

  63. Novakova O, Kasparkova J, Bursova V, Hofr C, Vojtiskova M, Chen H, Sadler PJ, Brabec V. Chem Biol, 2005, 12: 121–129

    Article  CAS  Google Scholar 

  64. Chen H, Parkinson JA, Parsons S, Coxall RA, Gould RO, Sadler PJ. J Am Chem Soc, 2002, 124: 3064–3082

    Article  CAS  Google Scholar 

  65. Liu HK, Parkinson JA, Bella J, Wang F, Sadler PJ. Chem Sci, 2010, 1: 258–270

    Article  CAS  Google Scholar 

  66. Liu HK, Berners-Price SJ, Wang F, Parkinson JA, Xu J, Bella J, Sadler PJ. Angew Chem Int Ed, 2006, 45: 8153–8156

    Article  CAS  Google Scholar 

  67. Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ. J Med Chem, 2005, 48: 4161–4171

    Article  CAS  Google Scholar 

  68. Clavel CM, Paunescu E, Nowak-Sliwinska P, Griffioen AW, Scopelliti R, Dyson PJ. J Med Chem, 2014, 57: 3546–3558

    Article  CAS  Google Scholar 

  69. Clavel CM, Paunescu E, Nowak-Sliwinska P, Griffioen AW, Scopelliti R, Dyson PJ. J Med Chem, 2015, 58: 3356–3365

    Article  CAS  Google Scholar 

  70. Meggers E. Curr Opin Chem Biol, 2007, 11: 287–292

    Article  CAS  Google Scholar 

  71. Dörr M, Meggers E. Curr Opin Chem Biol, 2014, 19: 76–81

    Article  Google Scholar 

  72. Maksimoska J, Feng L, Harms K, Yi C, Kissil J, Marmorstein R, Meggers E. J Am Chem Soc, 2008, 130: 15764–15765

    Article  CAS  Google Scholar 

  73. Meggers E, Atilla-Gokcumen G, Bregman H, Maksimoska J, Mulcahy S, Pagano N, Williams D. Synlett, 2007, 2007: 1177–1189

    Article  Google Scholar 

  74. Debreczeni JÉ, Bullock AN, Atilla GE, Williams DS, Bregman H, Knapp S, Meggers E. Angew Chem Int Ed, 2006, 45: 1580–1585

    Article  CAS  Google Scholar 

  75. Biersack B, Zoldakova M, Effenberger K, Schobert R. Eur J Med Chem, 2010, 45: 1972–1975

    Article  CAS  Google Scholar 

  76. Caruso F, Rossi M, Benson A, Opazo C, Freedman D, Monti E, Gariboldi MB, Shaulky J, Marchetti F, Pettinari R, Pettinari C. J Med Chem, 2012, 55: 1072–1081

    Article  CAS  Google Scholar 

  77. Zheng W, Luo Q, Lin Y, Zhao Y, Wang X, Du Z, Hao X, Yu Y, Lü S, Ji L, Li X, Yang L, Wang F. Chem Commun, 2013, 49: 10224–10226

    Article  CAS  Google Scholar 

  78. Zhang Y, Zheng W, Luo Q, Zhao Y, Zhang E, Liu S, Wang F. Dalton Trans, 2015, 44: 13100–13111

    Article  CAS  Google Scholar 

  79. Du J, Zhang E, Zhao Y, Zheng W, Zhang Y, Lin Y, Wang Z, Luo Q, Wu K, Wang F. Metallomics, 2015, 7: 1573–1583

    Article  CAS  Google Scholar 

  80. Lü S, Zheng W, Ji L, Luo Q, Hao X, Li X, Wang F. Eur J Med Chem, 2013, 61: 84–94

    Article  Google Scholar 

  81. Wachter E, Heidary DK, Howerton BS, Parkin S, Glazer EC. Chem Commun, 2012, 48: 9649–9651

    Article  CAS  Google Scholar 

  82. Howerton BS, Heidary DK, Glazer EC. J Am Chem Soc, 2012, 134: 8324–8327

    Article  CAS  Google Scholar 

  83. Tan C, Wu S, Lai S, Wang M, Chen Y, Zhou L, Zhu Y, Lian W, Peng W, Ji L, Xu A. Dalton Trans, 2011, 40: 8611–8621

    Article  CAS  Google Scholar 

  84. Komor AC, Barton JK. Chem Commun, 2013, 49: 3617–3630

    Article  CAS  Google Scholar 

  85. Liao GL, Chen X, Ji LN, Chao H. Chem Commun, 2012, 48: 10781–10783

    Article  CAS  Google Scholar 

  86. Friedman AE, Chambron JC, Sauvage JP, Turro NJ, Barton JK. J Am Chem Soc, 1990, 112: 4960–4962

    Article  CAS  Google Scholar 

  87. Ji L-N, Zou X-H, Liu J-G. Coord Chem Rev, 2001, 216–217: 513–536

    Article  Google Scholar 

  88. Mardanya S, Karmakar S, Maity D, Baitalik S. Inorg Chem, 2015, 54: 513–526

    Article  CAS  Google Scholar 

  89. Singh TN, Turro C. Inorg Chem, 2004, 43: 7260–7262

    Article  CAS  Google Scholar 

  90. Du J, Kang Y, Zhao Y, Zheng W, Zhang Y, Lin Y, Wang Z, Wang Y, Luo Q, Wu K, Wang F. Inorg Chem, 2016, 55: 4595–4605

    Article  CAS  Google Scholar 

  91. Chow PK, Cheng G, Tong GSM, To WP, Kwong WL, Low KH, Kwok CC, Ma C, Che CM. Angew Chem Int Ed, 2015, 54: 2084–2089

    Article  CAS  Google Scholar 

  92. Li K, Ming Tong GS, Wan Q, Cheng G, Tong WY, Ang WH, Kwong WL, Che CM. Chem Sci, 2016, 7: 1653–1673

    Article  CAS  Google Scholar 

  93. Colombo A, Fiorini F, Septiadi D, Dragonetti C, Nisic F, Valore A, Roberto D, Mauro M, De Cola L. Dalton Trans, 2015, 44: 8478–8487

    Article  CAS  Google Scholar 

  94. Suntharalingam K, Leczkowska A, Furrer MA, Wu Y, Kuimova MK, Therrien B, White AJP, Vilar R. Chem Eur J, 2012, 18: 16277–16282

    Article  CAS  Google Scholar 

  95. Sun WYR, Chow LFA, Li XH, Yan JJ, Chui SYS, Che CM. Chem Sci, 2011, 2: 728–736

    Article  CAS  Google Scholar 

  96. Tsai JLL, Zou T, Liu J, Chen T, Chan AOY, Yang C, Lok CN, Che CM. Chem Sci, 2015, 6: 3823–3830

    Article  CAS  Google Scholar 

  97. Li K, Zou T, Chen Y, Guan X, Che CM. Chem Eur J, 2015, 21: 7441–7453

    Article  CAS  Google Scholar 

  98. Zou T, Liu J, Lum CT, Ma C, Chan RCT, Lok CN, Kwok WM, Che CM. Angew Chem Int Ed, 2014, 53: 10119–10123

    Article  CAS  Google Scholar 

  99. Wang P, Leung CH, Ma DL, Sun RWY, Yan SC, Chen QS, Che CM. Angew Chem Int Ed, 2011, 50: 2554–2558

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Zhao or Fuyi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Zhao, Y., Luo, Q. et al. Rational design of multi-targeting ruthenium- and platinum-based anticancer complexes. Sci. China Chem. 59, 1240–1249 (2016). https://doi.org/10.1007/s11426-016-0178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0178-7

Keywords

Navigation