Skip to main content
Log in

Pure aromatic hydrocarbons with meta-linked phenyl-core and perihedral fluorene substitutions with/without inert groups of tert-butyl: bipolar hosts for blue phosphorescence

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two pure hydrocarbon molecules of 1,3,5-tris(9-phenyl-9H-fluoren-9-yl)benzene (m TPFB) and 1,3,5-tris(2-tert-butyl-9-phenyl-9H-fluoren-9-yl)benzene (t Bu-m TPFB) were synthesized. Due to the conjugation blocked connection mode and rigid/bulky substitutions, these two materials possess high triplet energy, enabling them as good hosts for blue phosphor in PhOLEDs. By studying their thermal, electrochemical, electronic absorption and photoluminescent properties, it was found that the influence of the inert tert-butyl group on material photoelectrical properties is negligible. For instance, m TPFB and t Bu-m TPFB showed very similar absorption and emission profiles, with almost the same bandgap, triplet energy and energy levels. However, the encapsulation of tert-butyl on the 2-position of 9-phenylfluorene enhanced material thermal stability. Most importantly, carrier transport properties were improved dramatically, as proved by the mono carrier device. Blue phosphorescent OLEDs hosted by t Bu-m TPFB showed external quantum efficiency of 15.2% and current efficiency of 23.0 cd/A, which were much higher than that of the OLEDs based on m TPFB with the analogous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukagawa H, Irisa S, Hanashima H, Shimizu T, Tokito S, Yokoyama N, Fujikake H. Organic Electrons, 2011, 12: 1638–1643

    Article  CAS  Google Scholar 

  2. Lai CC, Huang MJ, Chou HH, Liao CY, Rajamalli P, Cheng CH. Adv Funct Mater, 2015, 25: 5548–5556

    Article  CAS  Google Scholar 

  3. Zhao Y, Wu C, Qiu P, Li X, Wang Q, Chen J, Ma D. ACS Appl Mater Interf, 2016, 8: 2635–2643

    Article  CAS  Google Scholar 

  4. Ban X, Jiang W, Zheng Z, Wang J, Xia L, Zhou J, Sun Y. Organic Electrons, 2015, 24: 65–72

    Article  CAS  Google Scholar 

  5. Park JH, Kim EK, El-Deeb IM, Jung SJ, Choi DH, Kim DH, Yoo KH, Kwon JH, Lee SH. Bull Korean Chem Soc, 2011, 32: 841–846

    Article  CAS  Google Scholar 

  6. Gong S, Chen Y, Luo J, Yang C, Zhong C, Qin J, Ma D. Adv Funct Mater, 2011, 21: 1168–1178

    Article  CAS  Google Scholar 

  7. Wang HJ, Liu C, Mi BX, Sang J, Li X, Gao ZQ. Sci China Chem, 2014, 57: 849–856

    Article  CAS  Google Scholar 

  8. Mi BX, Gao ZQ, Liao ZJ, Huang W, Chen CH. Sci China Chem, 2010, 53: 1679–1694

    Article  CAS  Google Scholar 

  9. Duan L, Qiao J, Sun Y, Qiu Y. Adv Mater, 2011, 23: 1137–1144

    Article  CAS  Google Scholar 

  10. Zhuo MJ, Sun W, Liu GW, Wang J, Guo LY, Liu C, Mi BX, Song J, Gao ZQ. J Mater Chem C, 2015, 3: 9137–9144

    Article  CAS  Google Scholar 

  11. Gong S, Chen Y, Yang C, Zhong C, Qin J, Ma D. Adv Mater, 2010, 22: 5370–5373

    Article  CAS  Google Scholar 

  12. Tao Y, Wang Q, Yang C, Wang Q, Zhang Z, Zou T, Qin J, Ma D. Angew Chem Int Ed, 2008, 47: 8104–8107

    Article  CAS  Google Scholar 

  13. Cheng SH, Hung WY, Cheng MH, Chen HF, Chaskar A, Lee GH, Chou SH, Wong KT. J Mater Chem C, 2014, 2: 8554–8563

    Article  CAS  Google Scholar 

  14. Mi BX, Gao ZQ, Liu MW, Chan KY, Kwong HL, Wong NB, Lee CS, Hung LS, Lee ST. J Mater Chem, 2002, 12: 1307–1310

    Article  CAS  Google Scholar 

  15. Xue JY, Ikemoto K, Takahashi N, Izumi T, Taka H, Kita H, Sato S, Isobe H. J Org Chem, 2014, 79: 9735–9739

    Article  CAS  Google Scholar 

  16. Poriel C, Métivier R, Rault-Berthelot J, Thirion D, Barrière F, Jeannin O. Chem Commun, 2011, 47: 11703–11705

    Article  CAS  Google Scholar 

  17. Tao S, Xu S, Zhang X. Chem Phys Lett, 2006, 429: 622–627

    Article  CAS  Google Scholar 

  18. Thiery S, Tondelier D, Declairieux C, Seo G, Geffroy B, Jeannin O, Rault-Berthelot J, Métivier R, Poriel C. J Mater Chem C, 2014, 2: 4156–4166

    Article  CAS  Google Scholar 

  19. Cui LS, Xie YM, Wang YK, Zhong C, Deng YL, Liu XY, Jiang ZQ, Liao LS. Adv Mater, 2015, 27: 4213–4217

    Article  CAS  Google Scholar 

  20. Zhang Z, Zhang Z, Ding D, Wei Y, Xu H, Jia J, Zhao Y, Pan K, Huang W. J Phys Chem C, 2014, 118: 20559–20570

    Article  CAS  Google Scholar 

  21. Fan C, Chen Y, Gan P, Yang C, Zhong C, Qin J, Ma D. Org Lett, 2010, 12: 5648–5651

    Article  CAS  Google Scholar 

  22. Xue JY, Izumi T, Yoshii A, Ikemoto K, Koretsune T, Akashi R, Arita R, Taka H, Kita H, Sato S, Isobe H. Chem Sci, 2016, 7: 896–904

    Article  CAS  Google Scholar 

  23. Ye S, Liu Y, Di C, Xi H, Wu W, Wen Y, Lu K, Du C, Liu Y, Yu G. Chem Mater, 2009, 21: 1333–1342

    Article  CAS  Google Scholar 

  24. Li W, Qiao J, Duan L, Wang L, Qiu Y. Tetrahedron, 2007, 63: 10161–10168

    Article  CAS  Google Scholar 

  25. Calais JL. Int J Quantum Chem, 1993, 47: 101–101

    Article  Google Scholar 

  26. Lee C, Yang W, Parr RG. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  27. Hohenberg P, Kohn W. Phys Rev, 1964, 136: B864–B871

    Article  Google Scholar 

  28. Cao X, Yang W, Liu C, Wei F, Wu K, Sun W, Song J, Xie L, Huang W. Org Lett, 2013, 15: 3102–3105

    Article  CAS  Google Scholar 

  29. Rault-Berthelot J, Granger MM, Mattiello L. Synthetic Met, 1998, 97: 211–215

    Article  CAS  Google Scholar 

  30. Ho MH, Balaganesan B, Chu TY, Chen TM, Chen CH. Thin Solid Films, 2008, 517: 943–947

    Article  CAS  Google Scholar 

  31. Yu D, Zhao F, Zhang Z, Han C, Xu H, Li J, Ma D, Yan P. Chem Commun, 2012, 48: 6157–6159

    Article  CAS  Google Scholar 

  32. Xie LH, Ling QD, Hou XY, Huang W. J Am Chem Soc, 2008, 130: 2120–2121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (61474064, 61504063), funding from Nanjing University of Posts and Telecommunications (NY214085, NY214177), the Natural Science Foundation of Jiangsu Province (BK20150836), the National Basic Research Program of China (2015CB932200), the National Synergistic Innovation Center for Advanced Materials (SICAM), Synergistic Innovation Center for Organic Electronics and Information Displays, Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, YX03001), and funding from Key Laboratory for Organic Electronics & Information Displays.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoxiu Mi, Juan Song or Zhiqiang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wang, C., Mi, B. et al. Pure aromatic hydrocarbons with meta-linked phenyl-core and perihedral fluorene substitutions with/without inert groups of tert-butyl: bipolar hosts for blue phosphorescence. Sci. China Chem. 60, 223–230 (2017). https://doi.org/10.1007/s11426-016-0155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0155-y

Keywords

Navigation