Science China Chemistry

, Volume 60, Issue 2, pp 231–236 | Cite as

Organic sensitizers with different thiophene units as conjugated bridges: molecular engineering and photovoltaics

  • Wenqin Li
  • Zihua Wu
  • Jinmin Wang
  • Weiwei Zhang
  • Min Wu
  • Weihong Zhu


Three structural modifications with incorporation of alkyl, alkoxy and vinyl bond into the skeleton of thiophene bridge in D-π-A featured organic sensitizers are specifically developed for insight into their influences on photophysical, electrochemical as well as photovoltaic properties in nanocrystalline TiO2-based dye sensitized solar cells (DSSCs). The insertion of vinyl bond into the conjugation bridge leads to the molecular planar configuration, and the conjugation bridge of 3,4-ethylenedioxythiophene (EDOT) is prone to positively shift its highest occupied molecular orbital (HOMO). The electrochemical impedance spectroscopy (EIS) results indicate that the grafted long alkyl chain onto thiophene is favorable to suppress dye aggregation when adsorbed onto TiO2 film and modification on interface of TiO2/dye/electrolyte, resulting in a relatively high open-circuit voltage (V oc). Under optimized conditions, dye LS-4 bearing hexylthiophene as the conjugation bridge shows a relatively high overall conversion efficiency of 5.45%, with a photocurrent of 11.61 mA cm–2, V oc of 744 mV.


organic sensitizers conjugated bridge solar cells photovoltaic performances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Science Fund for Creative Research Groups (21421004), Distinguished Young Scholars, the National Natural Science Foundation of China (21325625), Oriental Scholarship, Programme of Introducing Talents of Discipline to Universities, Science and Technology Commission of Shanghai Municipality (14YF1410500 and 15XD1501400), Shanghai Young Teacher Supporting Foundation (ZZEGD14011), School Funding of Shanghai Second Polytechnic University (EGD14XQD08), and “Shu Guang” project (13SG55).


  1. 1.
    Ooyama Y, Uenaka K, Kanda M, Yamada T, Shibayama N, Ohshita J. Dyes Pigments, 2015, 122: 40–45CrossRefGoogle Scholar
  2. 2.
    Chou CC, Hu FC, Yeh HH, Wu HP, Chi Y, Clifford JN, Palomares E, Liu SH, Chou PT, Lee GH. Angew Chem Int Ed, 2014, 53: 178–183CrossRefGoogle Scholar
  3. 3.
    Gupta A, Armel V, Xiang W, Bilic A, Evans RA. Dyes Pigments, 2015, 113: 280–288CrossRefGoogle Scholar
  4. 4.
    Wu J, Wang J, Lin J, Xiao Y, Yue G, Huang M, Lan Z, Huang Y, Fan L, Yin S, Sato T. Sci Rep, 2013, 3: 2058Google Scholar
  5. 5.
    Antony MP, Moehl T, Wielopolski M, Moser JE, Nair S, Yu YJ, Kim JH, Kay KY, Jung YS, Yoon KB, Grätzel C, Zakeeruddin SM, Grätzel M. ChemSusChem, 2015, 8: 3859–3868CrossRefGoogle Scholar
  6. 6.
    Yang L, Zheng Z, Li Y, Wu W, Tian H, Wang Z. Chem Commun, 2015, 51: 4842–4845CrossRefGoogle Scholar
  7. 7.
    Wang Y, Yang C, Chen J, Qi H, Hua J, Liu Y, Baranoff E, Tan H, Fan J, Zhu W. Dyes Pigments, 2016, 127: 204–212CrossRefGoogle Scholar
  8. 8.
    Liyanage NP, Yella A, Nazeeruddin M, Grätzel M, Delcamp JH. ACS Appl Mater Interf, 2016, 8: 5376–5384CrossRefGoogle Scholar
  9. 9.
    Islam A, Akhtaruzzaman M, Chowdhury TH, Qin C, Han L, Bedja IM, Stalder R, Schanze KS, Reynolds JR. ACS Appl Mater Interf, 2016, 8: 4616–4623CrossRefGoogle Scholar
  10. 10.
    Hill JP. Angew Chem Int Ed, 2016, 55: 2976–2978CrossRefGoogle Scholar
  11. 11.
    Massin J, Ducasse L, Abbas M, Hirsch L, Toupance T, Olivier C. Dyes Pigments, 2015, 118: 76–87CrossRefGoogle Scholar
  12. 12.
    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M. Nat Chem, 2014, 6: 242–247CrossRefGoogle Scholar
  13. 13.
    Tan LL, Xie LJ, Shen Y, Liu JM, Xiao LM, Kuang DB, Su CY. Dyes Pigments, 2014, 100: 269–277CrossRefGoogle Scholar
  14. 14.
    Tao Q, Xia Y, Xu X, Hedström S, Bäcke O, James DI, Persson P, Olsson E, Inganäs O, Hou L, Zhu W, Wang E. Macromolecules, 2015, 48: 1009–1016CrossRefGoogle Scholar
  15. 15.
    Shi J, Chai Z, Tang R, Hua J, Li Q, Li Z. Sci China Chem, 2015, 58: 1144–1151CrossRefGoogle Scholar
  16. 16.
    Tian H, Oscarsson J, Gabrielsson E, Eriksson SK, Lindblad R, Xu B, Hao Y, Boschloo G, Johansson EMJ, Gardner JM, Hagfeldt A, Rensmo H, Sun L. Sci Rep, 2014, 4: 4282Google Scholar
  17. 17.
    Tan WY, Wang R, Li M, Liu G, Chen P, Li XC, Lu SM, Zhu HL, Peng QM, Zhu XH, Chen W, Choy WCH, Li F, Peng J, Cao Y. Adv Funct Mater, 2014, 24: 6540–6547CrossRefGoogle Scholar
  18. 18.
    Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M. Chem Commun, 2015, 51: 15894–15897CrossRefGoogle Scholar
  19. 19.
    Wang S, Wang H, Guo J, Tang H, Zhao J. Dyes Pigments, 2014, 109: 96–104CrossRefGoogle Scholar
  20. 20.
    Zhang W, Feng Q, Wang ZS, Zhou G. Chem Asian J, 2013, 8: 939–946CrossRefGoogle Scholar
  21. 21.
    Wu CH, Chen MC, Su PC, Kuo HH, Wang CL, Lu CY, Tsai CH, Wu CC, Lin CY. J Mater Chem A, 2014, 2: 991–999CrossRefGoogle Scholar
  22. 22.
    Liu B, Liu Q, You D, Li X, Naruta Y, Zhu W. J Mater Chem, 2012, 22: 13348CrossRefGoogle Scholar
  23. 23.
    Chai Q, Li W, Zhu S, Zhang Q, Zhu W. ACS Sustain Chem Eng, 2014, 2: 239–247CrossRefGoogle Scholar
  24. 24.
    Wang L, Shen P, Cao Z, Liu X, Huang Y, Liu C, Chen P, Zhao B, Tan S. J Power Sources, 2014, 246: 831–839CrossRefGoogle Scholar
  25. 25.
    Zhao J, Yang X, Cheng M, Li S, Wang X, Sun L. J Mater Chem A, 2013, 1: 2441–2446CrossRefGoogle Scholar
  26. 26.
    Ooyama Y, Sato T, Harima Y, Ohshita J. J Mater Chem A, 2014, 2: 3293–3296CrossRefGoogle Scholar
  27. 27.
    Liu B, Li W, Wang B, Li X, Liu Q, Naruta Y, Zhu W. J Power Sources, 2013, 234: 139–146CrossRefGoogle Scholar
  28. 28.
    Seo KD, Song HM, Lee MJ, Pastore M, Anselmi C, De angelis F, Nazeeruddin MK, Gräetzel M, Kim HK. Dyes Pigments, 2011, 90: 304–310CrossRefGoogle Scholar
  29. 29.
    Zhu W, Wu Y, Wang S, Li W, Li X, Chen J, Wang Z, Tian H. Adv Funct Mater, 2011, 21: 756–763CrossRefGoogle Scholar
  30. 30.
    Li W, Liu B, Wu Y, Zhu S, Zhang Q, Zhu W. Dyes Pigments, 2013, 99: 176–184CrossRefGoogle Scholar
  31. 31.
    Lee KM, Chen CY, Wu SJ, Chen SC, Wu CG. Solar Energy Mater Solar Cells, 2013, 108: 70–77CrossRefGoogle Scholar
  32. 32.
    Lan T, Lu X, Zhang L, Chen Y, Zhou G, Wang ZS. J Mater Chem A, 2015, 3: 9869–9881CrossRefGoogle Scholar
  33. 33.
    Koide N, Islam A, Chiba Y, Han L. J Photochem Photobiol A-Chem, 2006, 182: 296–305CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Environmental and Materials Engineering, College of EngineeringShanghai Second Polytechnic UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina
  3. 3.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations