Advertisement

Science China Chemistry

, Volume 60, Issue 1, pp 136–143 | Cite as

Enhancement of the efficiency and stability of planar p-i-n perovskite solar cells via incorporation of an amine-modified fullerene derivative as a cathode buffer layer

  • Xiaodong Liu
  • Peng Huang
  • Qingqing Dong
  • Zhaowei Wang
  • Kaicheng Zhang
  • Hao Yu
  • Ming Lei
  • Yi ZhouEmail author
  • Bo SongEmail author
  • Yongfang LiEmail author
Articles

Abstract

A methanol-soluble diamine-modified fullerene derivative (denoted as PCBDANI) was applied as an efficient cathode buffer layer (CBL) in planar p-i-n perovskite solar cells (pero-SCs) based on the CH3NH3PbI3–x Cl x absorber. The device with PCBDANI single CBL exhibited significantly improved performance with a power conversion efficiency (PCE) of 15.45%, which is approximately 17% higher than that of the control device without the CBL. The dramatic improvement in PCE can be attributed to the formation of an interfacial dipole at the PCBM/Al interface originating from the amine functional group and the suppression of interfacial recombination by the PCBDANI interlayer. To further improve the PCE of pero-SCs, PCBDANI/LiF double CBLs were introduced between PCBM and the top Al electrode. An impressive PCE of 15.71% was achieved, which is somewhat higher than that of the devices with LiF or PCBDANI single CBL. Besides the PCE, the long-term stability of the device with PCBDANI/LiF double CBLs is also superior to that of the device with LiF single CBL.

Keywords

planar p-i-n perovskite solar cells cathode buffer layers amine-modified fullerene derivative PCBDANI/LiF double CBLs stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21204054, 51303118, 91333204), the Natural Science Foundation of Jiangsu Province (BK20130289), the Ph.D. Programs Foundation of Ministry of Education of China (20133201120008), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Scientific Research Foundation for Returned Scholars, Ministry of Education of China, and Beijing National Laboratory for Molecular Sciences, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials.

References

  1. 1.
    Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J, Li Y. Nano Lett, 2015, 15: 2756–2762CrossRefGoogle Scholar
  2. 2.
    Shi J, Xu X, Li D, Meng Q. Small, 2015, 11: 2472–2486CrossRefGoogle Scholar
  3. 3.
    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M, Han L. Science, 2015, 350: 944–948CrossRefGoogle Scholar
  4. 4.
    Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58: 221–238CrossRefGoogle Scholar
  5. 5.
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science, 2013, 342: 341–344CrossRefGoogle Scholar
  6. 6.
    Xing G, Mathews N, Sun S, Lim SS, Lam YM, Gratzel M, Mhaisalkar S, Sum TC. Science, 2013, 342: 344–347CrossRefGoogle Scholar
  7. 7.
    Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P. Nat Photon, 2014, 9: 106–112CrossRefGoogle Scholar
  8. 8.
    Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Nat Mater, 2014, 13: 897–903CrossRefGoogle Scholar
  9. 9.
    Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546CrossRefGoogle Scholar
  10. 10.
    Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. Science, 2015, 348: 1234–1237CrossRefGoogle Scholar
  11. 11.
    Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG. J Am Chem Soc, 2015, 137: 8696–8699CrossRefGoogle Scholar
  12. 12.
    Seo J, Park S, Chan kim Y, Jeon NJ, Noh JH, Yoon SC, Seok SI. Energy Environ Sci, 2014, 7: 2642–2646CrossRefGoogle Scholar
  13. 13.
    Liu X, Jiao W, Lei M, Zhou Y, Song B, Li Y. J Mater Chem A, 2015, 3: 9278–9284CrossRefGoogle Scholar
  14. 14.
    Sun K, Chang J, Isikgor FH, Li P, Ouyang J. Nanoscale, 2015, 7: 896–900CrossRefGoogle Scholar
  15. 15.
    Min J, Zhang ZG, Hou Y, Ramirez quiroz CO, Przybilla T, Bronnbauer C, Guo F, Forberich K, Azimi H, Ameri T, Spiecker E, Li Y, Brabec CJ. Chem Mater, 2015, 27: 227–234CrossRefGoogle Scholar
  16. 16.
    Jung JW, Chueh CC, Jen AKY. Adv Energy Mater, 2015, 5: 1500486CrossRefGoogle Scholar
  17. 17.
    Jung JW, Chueh CC, Jen AKY. Adv Mater, 2015, 27: 7874–7880CrossRefGoogle Scholar
  18. 18.
    Xue Q, Sun C, Hu Z, Huang F, Yip HL, Cao Y. Acta Chim Sin, 2015, 73: 179–192CrossRefGoogle Scholar
  19. 19.
    Liang PW, Liao CY, Chueh CC, Zuo F, Williams ST, Xin XK, Lin J, Jen AKY. Adv Mater, 2014, 26: 3748–3754CrossRefGoogle Scholar
  20. 20.
    Yu H, Liu X, Xia Y, Dong Q, Zhang K, Wang Z, Zhou Y, Song B, Li Y. J Mater Chem A, 2016, 4: 321–326CrossRefGoogle Scholar
  21. 21.
    Zhou Y, Yang M, Wu W, Vasiliev AL, Zhu K, Padture NP. J Mater Chem A, 2015, 3: 8178–8184CrossRefGoogle Scholar
  22. 22.
    Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture NP, Cui G. Angew Chem Int Ed, 2015, 54: 9705–9709CrossRefGoogle Scholar
  23. 23.
    Song TB, Chen Q, Zhou H, Jiang C, Wang HH, Yang Y, Liu Y, You J, Yang Y. J Mater Chem A, 2015, 3: 9032–9050CrossRefGoogle Scholar
  24. 24.
    Chueh CC, Li CZ, Jen AKY. Energy Environ Sci, 2015, 8: 1160–1189CrossRefGoogle Scholar
  25. 25.
    Rong Y, Liu L, Mei A, Li X, Han H. Adv Energy Mater, 2015, 5: 1501066CrossRefGoogle Scholar
  26. 26.
    Wang Y, Bai S, Cheng L, Wang N, Wang J, Gao F, Huang W. Adv Mater, 2015, 201504260Google Scholar
  27. 27.
    Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JTW, Wojciechowski K, Zhang W. J Phys Chem Lett, 2014, 5: 1511–1515CrossRefGoogle Scholar
  28. 28.
    Kim HS, Park NG. J Phys Chem Lett, 2014, 5: 2927–2934CrossRefGoogle Scholar
  29. 29.
    Chen HW, Sakai N, Ikegami M, Miyasaka T. J Phys Chem Lett, 2015, 6: 164–169CrossRefGoogle Scholar
  30. 30.
    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784CrossRefGoogle Scholar
  31. 31.
    Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J. Energy Environ Sci, 2014, 7: 2359–2365CrossRefGoogle Scholar
  32. 32.
    Xu J, Buin A, Ip AH, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, Mcdowell JJ, Kanjanaboos P, Sun JP, Lan X, Quan LN, Kim DH, Hill IG, Maksymovych P, Sargent EH. Nat Commun, 2015, 6: 7081CrossRefGoogle Scholar
  33. 33.
    Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J. Nat Commun, 2015, 6: 7747CrossRefGoogle Scholar
  34. 34.
    Meng L, You J, Guo TF, Yang Y. Acc Chem Res, 2016, 49: 155–165CrossRefGoogle Scholar
  35. 35.
    Chiang CH, Tseng ZL, Wu CG. J Mater Chem A, 2014, 2: 15897–15903CrossRefGoogle Scholar
  36. 36.
    Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B. Nanoscale, 2014, 6: 10505CrossRefGoogle Scholar
  37. 37.
    Xue Q, Hu Z, Liu J, Lin J, Sun C, Chen Z, Duan C, Wang J, Liao C, Lau WM, Huang F, Yip HL, Cao Y. J Mater Chem A, 2014, 2: 19598–19603CrossRefGoogle Scholar
  38. 38.
    Liu X, Yu H, Yan L, Dong Q, Wan Q, Zhou Y, Song B, Li Y. ACS Appl Mater Interf, 2015, 7: 6230–6237CrossRefGoogle Scholar
  39. 39.
    Liu X, Lei M, Zhou Y, Song B, Li Y. Appl Phys Lett, 2015, 107: 063901CrossRefGoogle Scholar
  40. 40.
    Li S, Lei M, Lv M, Watkins SE, Tan Z, Zhu J, Hou J, Chen X, Li Y. Adv Energy Mater, 2013, 3: 1569–1574CrossRefGoogle Scholar
  41. 41.
    Wei J, Zhao Y, Li H, Li G, Pan J, Xu D, Zhao Q, Yu D. J Phys Chem Lett, 2014, 5: 3937–3945CrossRefGoogle Scholar
  42. 42.
    Frost JM, Butler KT, Walsh A. Apl Mater, 2014, 2: 081506CrossRefGoogle Scholar
  43. 43.
    Chen B, Yang M, Zheng X, Wu C, Li W, Yan Y, Bisquert J, Garcia-belmonte G, Zhu K, Priya S. J Phys Chem Lett, 2015, 6: 4693–4700CrossRefGoogle Scholar
  44. 44.
    De Bastiani M, Dell’Erba G, Gandini M, D’Innocenzo V, Neutzner S, Kandada ARS, Grancini G, Binda M, Prato M, Ball JM, Caironi M, Petrozza A. Adv Energy Mater, 2016, 6: 1501453CrossRefGoogle Scholar
  45. 45.
    Jeon NJ, Lee HG, Kim YC, Seo J, Noh JH, Lee J, Seok SI. J Am Chem Soc, 2014, 136: 7837–7840CrossRefGoogle Scholar
  46. 46.
    Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P. Appl Phys Lett, 2002, 80: 1288CrossRefGoogle Scholar
  47. 47.
    Li Y, Zhao Y, Chen Q, Yang YM, Liu Y, Hong Z, Liu Z, Hsieh YT, Meng L, Li Y, Yang Y. J Am Chem Soc, 2015, 137: 15540–15547CrossRefGoogle Scholar
  48. 48.
    You J, Hong Z, Yang YM, Chen Q, Cai M, Song TB, Chen CC, Lu S, Liu Y, Zhou H, Yang Y. ACS Nano, 2014, 8: 1674–1680CrossRefGoogle Scholar
  49. 49.
    Kim YH, Cho H, Heo JH, Kim TS, Myoung NS, Lee CL, Im SH, Lee TW. Adv Mater, 2015, 27: 1248–1254CrossRefGoogle Scholar
  50. 50.
    Zuo L, Gu Z, Ye T, Fu W, Wu G, Li H, Chen H. J Am Chem Soc, 2015, 137: 2674–2679CrossRefGoogle Scholar
  51. 51.
    Yan W, Li Y, Li Y, Ye S, Liu Z, Wang S, Bian Z, Huang C. Nano Energy, 2015, 16: 428–437CrossRefGoogle Scholar
  52. 52.
    Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin MK, Grätzel M. Adv Funct Mater, 2014, 24: 3250–3258CrossRefGoogle Scholar
  53. 53.
    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H. Science, 2014, 345: 295–298CrossRefGoogle Scholar
  54. 54.
    Wang D, Wright M, Elumalai NK, Uddin A. Solar Energy Mater Solar Cells, 2016, 147: 255–275CrossRefGoogle Scholar
  55. 55.
    Kim JH, Williams ST, Cho N, Chueh CC, Jen AKY. Adv Energy Mater, 2015, 5: 1401229CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory of Advanced Optoelectronic Materials; College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  2. 2.Department of ChemistryZhejiang UniversityHangzhouChina
  3. 3.Beijing National Laboratory for Molecular Sciences; Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations