Skip to main content

C–H bond activation in the total syntheses of natural products

Abstract

The transition metal-mediated C–H bond activation has emerged as a powerful and ideal method for the total syntheses of natural products and pharmaceuticals, and has had a significant impact on synthetic planning and strategy in complex natural products. In this review, we describe selected recent examples of the transition metal-mediated C–H bond activation strategies for the rapid syntheses of natural products.

This is a preview of subscription content, access via your institution.

References

  1. 1 (a)

    Godula K. Science, 2006, 312: 67–72

    CAS  Article  Google Scholar 

  2. (b)

    McMurray L, O’Hara F, Gaunt MJ. Chem Soc Rev, 2011, 40: 1885–1898

    CAS  Article  Google Scholar 

  3. (c)

    Gutekunst WR, Baran PS. Chem Soc Rev, 2011, 40: 1976–1991

    CAS  Article  Google Scholar 

  4. (d)

    Chen DYK, Youn SW. Chem Eur J, 2012, 18: 9452–9474

    CAS  Article  Google Scholar 

  5. (e)

    Yamaguchi J, Yamaguchi AD, Itami K. Angew Chem Int Ed, 2012, 51: 8960–9009

    CAS  Article  Google Scholar 

  6. 2 (a)

    Crabtree RH. J Chem Soc Dalton Trans, 2001, 2437–2450

    Google Scholar 

  7. (b)

    Labinger JA, Bercaw JE. Nature, 2002, 417: 507–514

    CAS  Article  Google Scholar 

  8. (c)

    Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem Eur J, 2010, 16: 2654–2672

    CAS  Article  Google Scholar 

  9. 3

    Xu X, Liu Y, Park CM. Angew Chem Int Ed, 2012, 51: 9372–9376

    CAS  Article  Google Scholar 

  10. 4 (a)

    Guimond N, Gouliaras C, Fagnou K. J Am Chem Soc, 2010, 132: 6908–6909

    CAS  Article  Google Scholar 

  11. (b)

    Guimond N, Gorelsky SI, Fagnou K. J Am Chem Soc, 2011, 133: 6449–6457

    CAS  Article  Google Scholar 

  12. 5

    Ciufolini MA, Roschangar F. J Am Chem Soc, 1996, 118: 12082–12089

    CAS  Article  Google Scholar 

  13. 6 (a)

    Fischer DF, Sarpong R. J Am Chem Soc, 2010, 132: 5926–5927

    CAS  Article  Google Scholar 

  14. (b)

    Newton JN, Fischer DF, Sarpong R. Angew Chem Int Ed, 2013, 52: 1726–1730

    CAS  Article  Google Scholar 

  15. 7

    Yuan C, Chang CT, Axelrod A, Siegel D. J Am Chem Soc, 2010, 132: 5924–5925

    CAS  Article  Google Scholar 

  16. 8

    Zhao L, Tsukano C, Kwon E, Takemoto Y, Hirama M. Angew Chem Int Ed, 2013, 52: 1722–1725

    CAS  Article  Google Scholar 

  17. 9

    Cho JY. Science, 2002, 295: 305–308

    CAS  Article  Google Scholar 

  18. 10 (a)

    Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J Am Chem Soc, 2002, 124: 390–391

    CAS  Article  Google Scholar 

  19. (b)

    Murphy JM, Liao X, Hartwig JF. J Am Chem Soc, 2007, 129: 15434–15435

    CAS  Article  Google Scholar 

  20. 11

    Thompson AL, Kabalka GW, Akula MR, Huffman JW. Synthesis, 2005, 2005: 547–550

    Article  CAS  Google Scholar 

  21. 12

    Somei M, Yokoyama Y, Murakami Y, Ninomiya I, Kiguchi T, Naito T, Bancroft GM, Hu YF. Recent synthetic studies on the ergot alkaloids and related compounds. In: Cordell GA, Ed. The Alkaloids. San Diego: Academic Press, 2000. 191–257

    Google Scholar 

  22. 13 (a)

    Floss HG. Tetrahedron, 1976, 32: 873–912

    CAS  Article  Google Scholar 

  23. (b)

    Floss HG, Anderson JA. Biosynthesis of ergot toxins. In: Steyn PS, Ed. The Biosynthesis of Mycotoxins. New York: Academic Press, 1980. 17–67

    Chapter  Google Scholar 

  24. 14 (a)

    Li JJ, Mei TS, Yu JQ. Angew Chem Int Ed, 2008, 47: 6452–6455

    CAS  Article  Google Scholar 

  25. (b)

    Vickers CJ, Mei TS, Yu JQ. Org Lett, 2010, 12: 2511–2513

    CAS  Article  Google Scholar 

  26. (c)

    Mei TS, Wang X, Yu JQ. J Am Chem Soc, 2009, 131: 10806–10807

    CAS  Article  Google Scholar 

  27. 15

    Liu Q, Li Q, Ma Y, Jia Y. Org Lett, 2013, 15: 4528–4531

    CAS  Article  Google Scholar 

  28. 16 (a)

    Beswick PJ, Greenwood CS, Mowlem TJ, Nechvatal G, Widdowson DA. Tetrahedron, 1988, 44: 7325–7334

    CAS  Article  Google Scholar 

  29. (b)

    Beck EM, Grimster NP, Hatley R, Gaunt MJ. J Am Chem Soc, 2006, 128: 2528–2529

    CAS  Article  Google Scholar 

  30. 17 (a)

    Yokoyama Y, Matsumoto T, Murakami Y. J Org Chem, 1995, 60: 1486–1487

    CAS  Article  Google Scholar 

  31. (b)

    Yokoyama Y, Hikawa H, Mitsuhashi M, Uyama A, Hiroki Y, Murakami Y. Eur J Org Chem, 2004, 2004: 1244–1253

    Article  CAS  Google Scholar 

  32. (c)

    Ku JM, Jeong BS, Jew S, Park H. J Org Chem, 2007, 72: 8115–8118

    CAS  Article  Google Scholar 

  33. (d)

    Xu Z, Li Q, Zhang L, Jia Y. J Org Chem, 2009, 74: 6859–6862

    CAS  Article  Google Scholar 

  34. (e)

    Xu Z, Hu W, Liu Q, Zhang L, Jia Y. J Org Chem, 2010, 75: 7626–7635

    CAS  Article  Google Scholar 

  35. 18

    Tahara Y, Ito M, Kanyiva KS, Shibata T. Chem Eur J, 2015, 21: 11340–11343

    CAS  Article  Google Scholar 

  36. 19 (a)

    Tsuchikama K, Hashimoto Y, Endo K, Shibata T. Adv Synth Catal, 2009, 351: 2850–2854

    CAS  Article  Google Scholar 

  37. (b)

    Shibata T, Hashimoto Y, Otsuka M, Tsuchikama K, Endo K. Synlett, 2011, 2011: 2075–2079

    Article  CAS  Google Scholar 

  38. 20

    McMurray L, Beck EM, Gaunt MJ. Angew Chem Int Ed, 2012, 51: 9288–9291

    CAS  Article  Google Scholar 

  39. 21

    Takagi J, Sato K, Hartwig JF, Ishiyama T, Miyaura N. Tetrahedron Lett, 2002, 43: 5649–5651

    CAS  Article  Google Scholar 

  40. 22

    Barder TE, Walker SD, Martinelli JR, Buchwald SL. J Am Chem Soc, 2005, 127: 4685–4696

    CAS  Article  Google Scholar 

  41. 23

    Liégault B, Fagnou K. Organomets, 2008, 27: 4841–4843

    Article  CAS  Google Scholar 

  42. 24 (a)

    Jones SB, Simmons B, Mastracchio A, MacMillan DWC. Nature, 2011, 475: 183–188

    CAS  Article  Google Scholar 

  43. (b)

    Medley JW, Movassaghi M. Angew Chem Int Ed, 2012, 51: 4572–4576

    CAS  Article  Google Scholar 

  44. (c)

    De Simone F, Gertsch J, Waser J. Angew Chim Int Ed, 2010, 49: 5767–5770

    CAS  Article  Google Scholar 

  45. (d)

    Lajiness JP, Jiang W, Boger DL. Org Lett, 2012, 14: 2078–2081

    CAS  Article  Google Scholar 

  46. 25

    Su Y, Zhou H, Chen J, Xu J, Wu X, Lin A, Yao H. Org Lett, 2014, 16: 4884–4887

    CAS  Article  Google Scholar 

  47. 26

    Sun X, Shan G, Sun Y, Rao Y. Angew Chem Int Ed, 2013, 52: 4440–4444

    CAS  Article  Google Scholar 

  48. 27 (a)

    Diao T, White P, Guzei I, Stahl SS. Inorg Chem, 2012, 51: 11898–11909

    CAS  Article  Google Scholar 

  49. (b)

    Mcdonald RI, Stahl SS. Angew Chem Int Ed, 2010, 49: 5529–5532

    CAS  Article  Google Scholar 

  50. (c)

    Chen MS, White MC. J Am Chem Soc, 2004, 126: 1346–1347

    CAS  Article  Google Scholar 

  51. 28

    Beck EM, Hatley R, Gaunt MJ. Angew Chem Int Ed, 2008, 47: 3004–3007

    CAS  Article  Google Scholar 

  52. 29

    Meng Z, Yu H, Li L, Tao W, Chen H, Wan M, Yang P, Edmonds DJ, Zhong J, Li A. Nat Commun, 2015, 6: 6096–7003

    CAS  Article  Google Scholar 

  53. 30

    Del Valle L, Stille JK, Hegedus LS. J Org Chem, 1990, 55: 3019–3023

    CAS  Article  Google Scholar 

  54. 31

    Justicia J, Oltra JE, Cuerva JM. J Org Chem, 2004, 69: 5803–5806

    CAS  Article  Google Scholar 

  55. 32

    Kong A, Han X, Lu X. Org Lett, 2006, 8: 1339–1342

    CAS  Article  Google Scholar 

  56. 33

    Han X, Lu X. Org Lett, 2009, 11: 2381–2384

    CAS  Article  Google Scholar 

  57. 34 (a)

    Snider BB. Chem Rev, 1996, 96: 339–364

    CAS  Article  Google Scholar 

  58. (b)

    Snider BB, Mohan R, Kates SA. Tetrahedron Lett, 1987, 28: 841–844

    CAS  Article  Google Scholar 

  59. (c)

    Zoretic PA, Weng X, Biggers CK, Biggers MS, Caspar ML, Davis DG. Tetrahedron Lett, 1992, 33: 2637–2640

    CAS  Article  Google Scholar 

  60. (d)

    Zoretic PA, Fang H, Ribeiro AA. J Org Chem, 1998, 63: 4779–4785

    CAS  Article  Google Scholar 

  61. (e)

    Barrero AF, Herrador MM, Quílez del Moral JF, Valdivia MV. Org Lett, 2002, 4: 1379–1382

    CAS  Article  Google Scholar 

  62. 35 (a)

    Desai LV, Hull KL, Sanford MS. J Am Chem Soc, 2004, 126: 9542–9543

    CAS  Article  Google Scholar 

  63. (b)

    Neufeldt SR, Sanford MS. Org Lett, 2010, 12: 532–535

    CAS  Article  Google Scholar 

  64. 36

    Sui X, Zhu R, Li G, Ma X, Gu Z. J Am Chem Soc, 2013, 135: 9318–9321

    CAS  Article  Google Scholar 

  65. 37

    Jiao L, Herdtweck E, Bach T. J Am Chem Soc, 2012, 134: 14563–14572

    CAS  Article  Google Scholar 

  66. 38

    Grimster NP, Gauntlett C, Godfrey CRA, Gaunt MJ. Angew Chem Int Ed, 2005, 44: 3125–3129

    CAS  Article  Google Scholar 

  67. 39

    Liang J, Hu W, Tao P, Jia Y. J Org Chem, 2013, 78: 5810–5815

    CAS  Article  Google Scholar 

  68. 40

    Tao P, Liang J, Jia Y. Eur J Org Chem, 2014, 2014: 5735–5748

    CAS  Article  Google Scholar 

  69. 41

    Ueda K, Amaike K, Maceiczyk RM, Itami K, Yamaguchi J. J Am Chem Soc, 2014, 136: 13226–13232

    CAS  Article  Google Scholar 

  70. 42

    Pintori DG, Greaney MF. J Am Chem Soc, 2011, 133: 1209–1211

    CAS  Article  Google Scholar 

  71. 43

    Yamaguchi AD, Chepiga KM, Yamaguchi J, Itami K, Davies HML. J Am Chem Soc, 2015, 137: 644–647

    CAS  Article  Google Scholar 

  72. 44 (a)

    Davies HML, Hedley SJ. Chem Soc Rev, 2007, 36: 1109–1119

    CAS  Article  Google Scholar 

  73. (b)

    Reddy RP, Davies HML. J Am Chem Soc, 2007, 129: 10312–10313

    CAS  Article  Google Scholar 

  74. (c)

    Lian Y, Davies HML. Org Lett, 2010, 12: 924–927

    CAS  Article  Google Scholar 

  75. (d)

    Hedley SJ, Ventura DL, Dominiak PM, Nygren CL, Davies HML. J Org Chem, 2006, 71: 5349–5356

    CAS  Article  Google Scholar 

  76. (e)

    Peschko C, Steglich W. Tetrahedron Lett, 2000, 41: 9477–9481

    CAS  Article  Google Scholar 

  77. 45

    Pitts AK, O'Hara F, Snell RH, Gaunt MJ. Angew Chem Int Ed, 2015, 54: 5451–5455

    CAS  Article  Google Scholar 

  78. 46

    Phipps RJ, Grimster NP, Gaunt MJ. J Am Chem Soc, 2008, 130: 8172–8174

    CAS  Article  Google Scholar 

  79. 47

    Paul S, Chotana GA, Holmes D, Reichle RC, Maleczka, RE, Smith MR. J Am Chem Soc, 2006, 128: 15552–15553

    CAS  Article  Google Scholar 

  80. 48 (a)

    Aalten HL, van Koten G, Grove DM, Kuilman T, Piekstra OG, Hulshof LA, Sheldon RA. Tetrahedron, 1989, 45: 5565–5578

    CAS  Article  Google Scholar 

  81. (b)

    Kikugawa Y, Aoki Y, Sakamoto T. J Org Chem, 2001, 66: 8612–8615

    CAS  Article  Google Scholar 

  82. 49 (a)

    Okano K, Fujiwara H, Noji T, Fukuyama T, Tokuyama H. Angew Chem Int Ed, 2010, 49: 5925–5929

    CAS  Article  Google Scholar 

  83. (b)

    Tokuyama H, Okano K, Fujiwara H, Noji T, Fukuyama T. Chem Asian J, 2011, 6: 560–572

    CAS  Article  Google Scholar 

  84. 50

    Carradori S, Petzer JP. Expert Opin Ther Patents, 2015, 25: 91–110

    CAS  Google Scholar 

  85. 51

    Hong B, Li C, Wang Z, Chen J, Li H, Lei X. J Am Chem Soc, 2015, 137: 11946–11949

    CAS  Article  Google Scholar 

  86. 52

    Thuy-Boun PS, Villa G, Dang D, Richardson P, Su S, Yu JQ. J Am Chem Soc, 2013, 135: 17508–17513

    CAS  Article  Google Scholar 

  87. 53

    Mei TS, Wang DH, Yu JQ. Org Lett, 2010, 12: 3140–3143

    CAS  Article  Google Scholar 

  88. 54 (a)

    Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem Rev, 2010, 110: 890–931

    CAS  Article  Google Scholar 

  89. (b)

    Hartwig JF. Acc Chem Res, 2012, 45: 864–873

    CAS  Article  Google Scholar 

  90. 55

    Liao X, Stanley LM, Hartwig JF. J Am Chem Soc, 2011, 133: 2088–2091

    CAS  Article  Google Scholar 

  91. 56

    Nandi D, Ghosh D, Chen SJ, Kuo BC, Wang NM, Lee HM. J Org Chem, 2013, 78: 3445–3451

    CAS  Article  Google Scholar 

  92. 57

    Tsukano C, Muto N, Enkhtaivan I, Takemoto Y. Chem Asian J, 2014, 9: 2628–2634

    CAS  Article  Google Scholar 

  93. 58

    Shin Y, Yoo C, Moon Y, Lee Y, Hong S. Chem Asian J, 2015, 10: 878–881

    CAS  Article  Google Scholar 

  94. 59

    Guo L, Zhang F, Hu W, Li L, Jia Y. Chem Commun, 2014, 50: 3299

    CAS  Article  Google Scholar 

  95. 60

    Zhou B, Du J, Yang Y, Li Y. Chem Eur J, 2014, 20: 12768–12772

    CAS  Article  Google Scholar 

  96. 61

    Liu XG, Zhang SS, Jiang CY, Wu JQ, Li Q, Wang H. Org Lett, 2015, 17: 5404–5407

    CAS  Article  Google Scholar 

  97. 62

    Chu H, Sun S, Yu JT, Cheng J. Chem Commun, 2015, 51: 13327–13329

    CAS  Article  Google Scholar 

  98. 63

    Guo K, Chen X, Guan M, Zhao Y. Org Lett, 2015, 17: 1802–1805

    CAS  Article  Google Scholar 

  99. 64

    Fujiwara Y, Naithou K, Miyazaki T, Hashimoto K, Mori K, Yamamoto Y. Tetrahedron Lett, 2001, 42: 2497–2499

    CAS  Article  Google Scholar 

  100. 65

    Subehan S, Usia T, Kadota S, Tezuka Y. Planta Med, 2006, 72: 527–532

    CAS  Article  Google Scholar 

  101. 66

    Gutekunst WR, Baran PS. J Am Chem Soc, 2011, 133: 19076–19079

    CAS  Article  Google Scholar 

  102. 67

    Gutekunst WR, Gianatassio R, Baran PS. Angew Chem Int Ed, 2012, 51: 7507–7510

    CAS  Article  Google Scholar 

  103. 68 (a)

    Frébault F, Luparia M, Oliveira MT, Goddard R, Maulide N. Angew Chem Int Ed, 2010, 49: 5672–5676

    Article  CAS  Google Scholar 

  104. (b)

    Corey EJ, Streith J. J Am Chem Soc, 1964, 86: 950–951

    CAS  Article  Google Scholar 

  105. (c)

    Javaheripour H, Neckers DC. J Org Chem, 1977, 42: 1844–1850

    CAS  Article  Google Scholar 

  106. (d)

    Luparia M, Oliveira MT, Audisio D, Frébault F, Goddard R, Maulide N. Angew Chem Int Ed, 2011, 50: 12631–12635

    CAS  Article  Google Scholar 

  107. 69

    Stähelin HF, Wartburg A. Cancer Res, 1991, 51: 5–15

    Google Scholar 

  108. 70

    Ting CP, Maimone TJ. Angew Chem Int Ed, 2014, 53: 3115–3119

    CAS  Article  Google Scholar 

  109. 71 (a)

    Zaitsev VG, Shabashov D, Daugulis O. J Am Chem Soc, 2005, 127: 13154–13155

    CAS  Article  Google Scholar 

  110. (b)

    Shabashov D, Daugulis O. J Am Chem Soc, 2010, 132: 3965–3972

    CAS  Article  Google Scholar 

  111. (c)

    Tran LD, Daugulis O. Angew Chem Int Ed, 2012, 51: 5188–5191

    CAS  Article  Google Scholar 

  112. (d)

    Nadres ET, Daugulis O. J Am Chem Soc, 2012, 134: 7–10

    CAS  Article  Google Scholar 

  113. (e)

    Nadres ET, Santos GIF, Shabashov D, Daugulis O. J Org Chem, 2013, 78: 9689–9714

    CAS  Article  Google Scholar 

  114. 72

    Zhou M, Li XR, Tang JW, Liu Y, Li XN, Wu B, Qin HB, Du X, Li LM, Wang WG, Pu JX, Sun HD. Org Lett, 2015, 17: 6062–6065

    CAS  Article  Google Scholar 

  115. 73

    He G, Zhang SY, Nack WA, Pearson R, Rabb-Lynch J, Chen G. Org Lett, 2014, 16: 6488–6491

    CAS  Article  Google Scholar 

  116. 74

    Noisier AFM, Brimble MA. Chem Rev, 2014, 114: 8775–8806

    CAS  Article  Google Scholar 

  117. 75

    Ersmark K, Del Valle JR, Hanessian S. Angew Chem Int Ed, 2008, 47: 1202–1223

    CAS  Article  Google Scholar 

  118. 76 (a)

    Murakami M, Okita Y, Matsuda H, Okino T, Yamaguchi K. Tetrahedron Lett, 1994, 35: 3129–3132

    CAS  Article  Google Scholar 

  119. (b)

    Murakami M, Ishida K, Okino T, Okita Y, Matsuda H, Yamaguchi K. Tetrahedron Lett, 1995, 36: 2785–2788

    CAS  Article  Google Scholar 

  120. (c)

    Ishida K, Okita Y, Matsuda H, Okino T, Murakami M. Tetrahedron, 1999, 55: 10971–10988

    CAS  Article  Google Scholar 

  121. 77

    Dailler D, Danoun G, Baudoin O. Angew Chem Int Ed, 2015, 54: 4919–4922

    CAS  Article  Google Scholar 

  122. 78

    Sofack-Kreutzer J, Martin N, Renaudat A, Jazzar R, Baudoin O. Angew Chem Int Ed, 2012, 51: 10399–10402

    CAS  Article  Google Scholar 

  123. 79

    Zhang Q, Chen K, Rao W, Zhang Y, Chen FJ, Shi BF. Angew Chem Int Ed, 2013, 52: 13588–13592

    CAS  Article  Google Scholar 

  124. 80

    Romea P, Urpi F, Vilarrasa J. J Org Chem, 1989, 54: 3209–3211

    CAS  Article  Google Scholar 

  125. 81

    Ishiyama T, Nobuta Y, Hartwig JF, Miyaura N. Chem Commun, 2003, 2924

    Google Scholar 

  126. 82

    Feng Y, Holte D, Zoller J, Umemiya S, Simke LR, Baran PS. J Am Chem Soc, 2015, 137: 10160–10163

    CAS  Article  Google Scholar 

  127. 83

    Shade RE, Hyde AM, Olsen JC, Merlic CA. J Am Chem Soc, 2010, 132: 1202–1203

    CAS  Article  Google Scholar 

  128. 84

    Zhou S, Jia Y. Org Lett, 2014, 16: 3416–3418

    CAS  Article  Google Scholar 

  129. 85 (a)

    Ishiyama T, Takagi J, Hartwig JF, Miyaura N. Angew Chem Int Ed, 2002, 41: 3056–3058

    CAS  Article  Google Scholar 

  130. (b)

    Ishiyama T, Takagi J, Yonekawa Y, Hartwig JF, Miyaura N. Adv Synth Catal, 2003, 345: 1103–1106

    CAS  Article  Google Scholar 

  131. (c)

    Chen H. Science, 2000, 287: 1995–1997

    CAS  Article  Google Scholar 

  132. 86

    Nicolaou KC, Dalby SM, Majumder U. J Am Chem Soc, 2008, 130: 14942–14943

    CAS  Article  Google Scholar 

  133. 87

    Chen Z, Zhou S, Jia Y. J Org Chem, 2015, 80: 12545–12551

    CAS  Article  Google Scholar 

  134. 88

    Rosen BR, Simke LR, Thuy-Boun PS, Dixon DD, Yu JQ, Baran PS. Angew Chem Int Ed, 2013, 52: 7317–7320

    CAS  Article  Google Scholar 

  135. 89 (a)

    Desai LV, Malik HA, Sanford MS. Org Lett, 2006, 8: 1141–1144

    CAS  Article  Google Scholar 

  136. (b)

    Yang Y, Lin Y, Rao Y. Org Lett, 2012, 14: 2874–2877

    CAS  Article  Google Scholar 

  137. (c)

    Shan G, Yang X, Ma L, Rao Y. Angew Chem Int Ed, 2012, 51: 13070–13074

    CAS  Article  Google Scholar 

  138. (d)

    Mo F, Trzepkowski LJ, Dong G. Angew Chem Int Ed, 2012, 51: 13075–13079

    CAS  Article  Google Scholar 

  139. 90 (a)

    Wasa M, Engle KM, Yu JQ. J Am Chem Soc, 2009, 131: 9886–9887

    CAS  Article  Google Scholar 

  140. (b)

    Gou FR, Wang XC, Huo PF, Bi HP, Guan ZH, Liang YM. Org Lett, 2009, 11: 5726–5729

    CAS  Article  Google Scholar 

  141. 91

    Kubo M, Okada C, Huang JM, Harada K, Hioki H, Fukuyama Y. Org Lett, 2009, 11: 5190–5193

    CAS  Article  Google Scholar 

  142. 92

    Siler DA, Mighion JD, Sorensen EJ. Angew Chem Int Ed, 2014, 53: 5332–5335

    CAS  Article  Google Scholar 

  143. 93

    Rasik CM, Brown MK. Angew Chem Int Ed, 2014, 53: 14522–14526

    CAS  Article  Google Scholar 

  144. 94

    Hoecker J, Gademann K. Org Lett, 2013, 15: 670–673

    CAS  Article  Google Scholar 

  145. 95

    Li Y, Ding YJ, Wang JY, Su YM, Wang XS. Org Lett, 2013, 15: 2574–2577

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanxing Jia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tao, P., Jia, Y. C–H bond activation in the total syntheses of natural products. Sci. China Chem. 59, 1109–1125 (2016). https://doi.org/10.1007/s11426-016-0058-7

Download citation

Keywords

  • C–H activation
  • transition metal
  • natural product
  • total synthesis