For selected reviews and books on transition metal catalysis and C–H activation, see: a) HickmanAJ, Sanford MS. Nature, 2012, 484: 177–185
Yeung CS, Dong VM. Chem Rev, 2011, 111: 1215–1292
Article
CAS
Google Scholar
Ackermann L. Chem Rev, 2011, 111: 1315–1345
Article
CAS
Google Scholar
Davies HM, Du Bois J, Yu JQ. Chem Soc Rev, 2011, 40: 1855–1856
Article
CAS
Google Scholar
Yu JQ, Shi ZJ. Topics in Current Chemistry. Heidelberg: Springer, 2010
Google Scholar
Dyker G. Handbook of C–H Transformations. Weinheim: Wiley-VCH, 2005
Book
Google Scholar
Beller M, Bolm C. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Vol. 1 and 2. 2nd Ed, Weinheim: Wiley-VCH, 2004
For selected reviews and books, see: a) Zhuo CX, Zheng C, You SL. Acc Chem Res, 2014, 47: 2258–1856
Bandini M. Angew Chem Int Ed, 2011, 50: 994–995
Article
CAS
Google Scholar
Trost BM, Lee C. Catalytic Asymmetric Synthesis. 2nd Ed. New York: Wiley-VCH, 2010. 593–649
Google Scholar
Lu Z, Ma S. Angew Chem Int Ed, 2008, 47: 258–297
Article
CAS
Google Scholar
Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century. Chichester: Wiley, 2004: 431–518
Dai LX, Tu T, You SL, Deng WP, Hou XL. Acc Chem Res, 2003, 36: 659–667
Article
CAS
Google Scholar
For selected papers on reduction of π-allylpalladium complexes to allylic radicals, see: a) Millán A, Martín-Lasanta A, Miguel D, Cienfuegos LA, Cuerva JM. Chem Commun, 2011, 47: 10470–10472
Millán A, Campana AG, Bazdi B, Miguel D, Cienfuegos LA, Echavarren AM, Cuerva JM. Chem Eur J, 2011, 17: 3985–3994
Article
Google Scholar
Campana AG, Bazdi B, Fuentes N, Robles R, Cuerva JM. Angew Chem Int Ed, 2008, 47: 7515–7519
Article
CAS
Google Scholar
Sasaoka SI, Yamamoto T, Kinoshita H, Inomata K, Kotake H. Chem Lett, 1985, 315–318
Google Scholar
For selected reviews, see: a) Narayanam JM, Stephenson CR. Chem Soc Rev, 2011, 40: 102–113
Teplý F. Collect Czech Chem Commun, 2011, 76: 859–917
Article
Google Scholar
Shi L, Xia W. Chem Soc Rev, 2012, 41: 7687–7697
Article
CAS
Google Scholar
Xuan J, Xiao WJ. Angew Chem Int Ed, 2012, 51: 6828-6838
Prier CK, Rankic DA, MacMillan DW. Chem Rev, 2013, 113: 5322–5363
Article
CAS
Google Scholar
Ravelli D, Fagnoni M, Albini A. Chem Soc Rev, 2013, 42: 97–113
Article
CAS
Google Scholar
Xi Y, Yi H, Lei A. Org Biomol Chem, 2013, 11: 2387–2403
Article
CAS
Google Scholar
Schultz DM, Yoon TP. Science, 2014, 343: 1239176
Article
Google Scholar
For reviews and books on dual catalysis merging visible light photocatalysis with other catalytic manners, see: a) Hopkinson MN, SahooB, Li J, Glorius F. Chem Eur J, 2014, 20: 3874–3886
Zeitler K, Neumann M. Synergistic visible light photoredox catalysis. In: König B, Ed. Chemical Photocatalysis. Germany: Walter de Gruyter, 2013. 151–168.
Google Scholar
For recent examples with palladium catalysis, see: c) Xuan J, Zeng TT, Feng ZJ, Deng QH, Chen JR, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2015, 54: 1625–1628
Lang SB, O’Nele K, Tunge JA. J Am Chem Soc, 2014, 136: 13606–13609.
Article
CAS
Google Scholar
With gold catalysis, see: e) Hopkinson MN, Sahoo B, Glorius F. Adv Synth Catal, 2014, 356: 2794–2800
Shu XZ, Zhang M, He Y, Frei H, Toste FD. J Am Chem Soc, 2014, 136: 5844–5847.
Article
CAS
Google Scholar
With nickel catalysis, see: g) Xuan J, Zeng TT, Chen JR, Lu LQ, Xiao WJ. Chem Eur J, 2015, 21: 4962–4965.
With others, see: h) Feng ZJ, Xuan J, Xia XD, Ding W, Guo W, Chen JR, Zou YQ, Lu LQ, Xiao WJ. Org Biomol Chem, 2014, 12: 2037–2040
Bergonzini G, Schindler CS, Wallentin CJ, Jacobsen EN, Stephenson CRJ. Chem Sci, 2014, 5: 112–116
Article
CAS
Google Scholar
Zou YQ, Lu LQ, Fu L, Chang NJ, Rong J, Chen JR, Xiao WJ. Angew Chem Int Ed, 2011, 50: 7171–7175
Article
CAS
Google Scholar
Xuan J, Cheng Y, An J, Lu LQ, Zhang XX, Xiao WJ. Chem Commun, 2011, 47: 8337–8339
Article
CAS
Google Scholar
Zou YQ, Chen JR, Liu XP, Lu LQ, Davis RL, Jørgensen KA, Xiao WJ. Angew Chem Int Ed, 2012, 51: 784–788
Article
CAS
Google Scholar
Xuan J, Feng ZJ, Duan SW, Xiao WJ. RSC Adv, 2012, 2: 4065–4068
Article
CAS
Google Scholar
Xuan J, Xia XD, Zeng TT, Feng ZJ, Chen JR, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2014, 53: 5653–5656, and Refs. [3c,3g,3k]
Article
CAS
Google Scholar
Nguyen JD, D’Amato EM, Narayanam JM, Stephenson CR. Nat Chem, 2012, 4: 854–859
Article
CAS
Google Scholar
For selected reviews, see: a) Wei Y, Shi M. Acc Chem Res, 2010, 43: 1005–1018
Dai LX, Hou XL. Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications. Weinheim: Wiley-VCH, 2010
Google Scholar
List B. Asymmetric Organocatalysis. Heidlberg: Springer, 2010
Google Scholar
Denmark SE, Beutner GL. Angew Chem Int Ed, 2008, 47: 1560–1638
Article
CAS
Google Scholar
Fu GC. Acc Chem Res, 2006, 39: 853–860
Article
CAS
Google Scholar
Carnes ME, Collins MS, Lindquist NR, Percástegui EG, Pluth MD, Johnson DW. Chem Commun, 2014, 50: 73–75
Article
CAS
Google Scholar
Patel K, Miljanić OS, Stoddart JF. Chem Commun, 2008, 44: 1853–1855
Article
Google Scholar
de Sousa AL, Resck IS. J Braz Chem Soc, 2002, 13: 233–237
Article
CAS
Google Scholar
Tipson RS, Clapp MA, Cretcher LH. J Org Chem, 1947, 12: 133–138
Article
CAS
Google Scholar
For detailed condition optimization, including the evaluation of photocatalysts, solvents, light sources and bases, see Supporting Information
General Procedure: In a 10 mL dry flask equipped with magnetic bar was charged with 1 (0.5 mmol, 1.0 equiv.) and Ir(bpy)2(dtbbpy)PF6 (2 mol%), 5 (0.75 mmol, 1.5 equiv.), KI (20 mol%), NaCO2CF3 (1.0 mmol, 2.0 equiv.) and MeCN (5 mL). The mixture was degassed via freeze-pump-thaw method (3 times) and then stirred under the irradiation of 7 W blue LEDs at room temperature for 12 h. The resultant mixture was filtered under vacuum to remove the solid. The filtrate was purified by flash chromatography on silica gel (petroleum ether/DCM=10:1) to afford the desired product 3. Analytical data of 1-allyl-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3a): light yellow oil; 1H NMR (600 MHz, CDCl3) δ (ppm) 7.18 (m, 6H), 6.89 (d, J=8.2 Hz, 2H), 6.73 (t, J=7.1 Hz, 1H), 5.89–5.82 (m, 1H), 5.06 (t, J=13.1 Hz, 2H), 4.74 (t, J=6.7 Hz, 1H), 3.72–3.52 (m, 2H), 3.08–2.96 (m, 1H), 2.88 (dt, J=15.7, 5.2 Hz, 1H), 2.78–2.65 (m, 1H), 2.49 (dt, J=14.1, 7.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ (ppm) 149.4, 138.1, 135.6, 134.9, 129.2, 128.5, 127.3, 126.5, 125.7, 117.2, 117.0, 113.8, 59.3, 41.9, 40.9, 27.4; HRMS: m/z (ESI) calculated [M+H]+ 250.1590, measured 250.1594.