Skip to main content

Flexible and stretchable electrodes for next generation polymer electronics: a review

Abstract

Transparent conductive electrodes play a significant role in the fabrication and development of optoelectronic devices. As next generation optoelectronic devices tend towards mobile and wearable devices, the added attribute of flexibility or stretchability for these electrodes becomes increasingly important. However, mechanical requirements aside, transparent conductive electrodes must still retain high transparency and conductivity, with the metrics for these parameters being compared to the standard, indium tin oxide. In the search to replace indium tin oxide, two materials that have risen to the forefront are carbon nanotubes and silver nanowires due to their high transparency, conductivity, mechanical compliance, and ease of fabrication. This review highlights recent innovations made by our group in electrodes utilizing carbon nanotubes and silver nanowires, in addition to the use of these electrodes in discrete devices and integrated systems.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Kumar A, Zhou C. ACS Nano, 2010, 4: 11–14

    CAS  Article  Google Scholar 

  2. 2

    Rowell MW, Topinka MA, McGehee MD, Prall HJ, Dennler G, Sariciftci NS, Hu L, Gruner G. Appl Phys Lett, 2006, 88: 86–89

    Article  Google Scholar 

  3. 3

    Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C. Nano Lett, 2006, 6: 1880–1886

    CAS  Article  Google Scholar 

  4. 4

    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Nature, 2009, 457: 706–710

    CAS  Article  Google Scholar 

  5. 5

    Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YII, Kim YJ, Kim KS, Özyilmaz B, Ahn JH, Hong BH, Lijima S. Nat Nanotechnol, 2010, 5: 574–578

    CAS  Article  Google Scholar 

  6. 6

    Ellmer K. Nat Photonics, 2012, 6: 808–816

    Article  Google Scholar 

  7. 7

    Zeng XY, Zhang QK, Yu RM, Lu CZ. Adv Mater, 2010, 22: 4484–4488

    CAS  Article  Google Scholar 

  8. 8

    Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato JP. Nanotechnology, 2013, 24: 452001

    Article  Google Scholar 

  9. 9

    Lee Y, Suh M, Kim D, Lee D, Chang H, Lee HS, Kim YW, Kim T, Suh KS, Jeon DY. Adv Funct Mater, 2014, 24: 6465–6472

    CAS  Article  Google Scholar 

  10. 10

    Song M, Park JH, Kim CS, Kim DH, Kang YC, Jin SH, Jin WY, Kang JW. Nano Res, 2014, 7: 1370–1379

    CAS  Article  Google Scholar 

  11. 11

    Jin J, Lee J, Jeong S, Yang S, Ko JH, Im HG, Baek SW, Lee JY, Bae BS. Energy Environ Sci, 2013, 6: 1811–1817

    CAS  Article  Google Scholar 

  12. 12

    Zhang X, Yan X, Chen J, Zhao J. Carbon, 2014, 69: 437–443

    CAS  Article  Google Scholar 

  13. 13

    Yu C, Wu H, Chien C. Jpn J Appl Phys, 2015, 54: 081101

    Article  Google Scholar 

  14. 14

    Liu HC, Lai YC, Lai CC, Wu BS, Zan HW, Yu P, Chueh YL, Tsai CC. ACS Appl Mater Interf, 2015, 7: 232–240

    CAS  Article  Google Scholar 

  15. 15

    Huang GW, Xiao HM, Fu SY. Nanoscale, 2014, 6: 8495–8502

    CAS  Article  Google Scholar 

  16. 16

    Wu J, Agrawal M, Becerril A, Bao Z, Liu Z, Chen KY, Peumans P. ACS Nano, 2010, 4: 43–48

    CAS  Article  Google Scholar 

  17. 17

    Yu Z, Hu L, Liu Z, Sun M, Wang M, Grüner G, Pei Q. Appl Phys Lett, 2009, 95: 2007–2010

    Google Scholar 

  18. 18

    Yu Z, Liu Z, Wang M, Sun M, Lei G, Pei Q. J Photonics Energy, 2011, 1: 011003

    Article  Google Scholar 

  19. 19

    Yu Z, Li L, Zhang Q, Hu W, Pei Q. Adv Mater, 2011, 23: 4453–4457

    CAS  Article  Google Scholar 

  20. 20

    Li L, Yu Z, Hu W, Chang CH, Chen Q, Pei Q. Adv Mater, 2011, 23: 5563–5567

    CAS  Article  Google Scholar 

  21. 21

    Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q. Adv Mater, 2011, 23: 664–668

    CAS  Article  Google Scholar 

  22. 22

    Li J, Liang J, Jian X, Hu W, Li J, Pei Q. Macromol Mater Eng, 2014, 299: 1403–1409

    CAS  Article  Google Scholar 

  23. 23

    Yuan W, Hu L, Yu Z, Lam T, Biggs J, Ha SM, Xi D, Chen B, Senesky MK, Grüner G, Pei Q. Adv Mater, 2008, 20: 621–625

    CAS  Article  Google Scholar 

  24. 24

    Brochu P, Stoyanov H, Chang R, Niu X, Hu W, Pei Q. Adv Energy Mater, 2014, 4: 1–9

    Article  Google Scholar 

  25. 25

    Hu L, Yuan W, Brochu P, Gruner G, Pei Q. Appl Phys Lett, 2009, 94: 5–8

    Google Scholar 

  26. 26

    Yu Z, Niu X, Liu Z, Pei Q. Adv Mater, 2011, 23: 3989–3994

    CAS  Article  Google Scholar 

  27. 27

    Hu W, Niu X, Li L, Yun S, Yu Z, Pei Q. Nanotechnology, 2012, 23: 344002

    Article  Google Scholar 

  28. 28

    Yun S, Niu X, Yu Z, Hu W, Brochu P, Pei Q. Adv Mater, 2012, 24: 1321–1327

    CAS  Article  Google Scholar 

  29. 29

    Hu W, Niu X, Zhao R, Pei Q. Appl Phys Lett, 2013, 102: 083303

    Article  Google Scholar 

  30. 30

    Liang J, Li L, Niu X, Yu Z, Pei Q. Nat Photonics, 2013, 7: 817–824

    CAS  Article  Google Scholar 

  31. 31

    Liang J, Li L, Tong K, Ren Z, Hu W, Niu X, Chen Y, Pei Q. ACS Nano, 2014, 8: 1590–1600

    CAS  Article  Google Scholar 

  32. 32

    Yu Z, Sun M, Pei Q. J Phys Chem B, 2009, 113: 8481–8486

    CAS  Article  Google Scholar 

  33. 33

    Yu Z, Wang M, Lei G, Liu J, Li L, Pei Q. J Phys Chem Lett, 2011, 2: 367–372

    CAS  Article  Google Scholar 

  34. 34

    Liang J, Li L, Niu X, Yu Z, Pei Q. J Phys Chem C, 2013, 117: 16632–16639

    CAS  Article  Google Scholar 

  35. 35

    Li L, Yu Z, Chang C, Hu W, Niu X, Chen Q, Pei Q. Phys Chem Chem Phys, 2012, 14, 14249–14254

    CAS  Article  Google Scholar 

  36. 36

    Li L, Liang J, Chou SY, Zhu X, Niu X, Yu Z, Pei Q. Sci Rep, 2014, 4: 4307

    Google Scholar 

  37. 37

    Liang J, Li L, Chen D, Hajagos T, Ren Z, Chou SY, Hu W, Pei Q. Nat Commun, 2015, 6: 7647

    CAS  Article  Google Scholar 

  38. 38

    Emmott CJM, Urbina A, Nelson J. Sol. Energy Mater Sol Cells, 2012, 97: 14–21

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qibing Pei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Liang, J. & Pei, Q. Flexible and stretchable electrodes for next generation polymer electronics: a review. Sci. China Chem. 59, 659–671 (2016). https://doi.org/10.1007/s11426-015-5520-9

Download citation

Keywords

  • transparent conductive electrode
  • carbon nanotube
  • silver nanowire
  • flexible
  • stretchable
  • OLED