Skip to main content
Log in

Reaction heat-driven CO2 desorption during CO oxidation on Au(997) at low temperatures

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Adsorption and reaction of CO and CO2 were studied on oxygen-covered Au(997) surfaces by means of temperatureprogrammed desorption/reaction spectroscopy. Oxygen atoms (O(a)) on Au(997) enhances the CO2 adsorption and stabilizes the adsorbed CO2(a), and the stabilization effect also depends on the CO2(a) coverage and involved Au sites. CO2(a) desorption is the rate-limiting step for the CO+O(a) reaction to produce CO2 on Au(997) at 105 K and exhibits complex behaviors, including the desorption of CO2(a) upon CO exposures at 105 K and the desorption of O(a)-stabilized CO2(a) at elevated temperatures. The desorption of CO2(a) from the surface upon CO exposures at 105 K to produce gaseous CO2 depends on the surface reaction extent and involves the reaction heat-driven CO2(a) desorption channel. CO+O(a) reaction proceeds more easily with weakly-bound oxygen adatoms at the (111) terraces than strongly-bound oxygen adatoms at the (111) steps. These results reveal complex rate-limiting CO2(a) desorption behaviors during CO+O(a) reaction on Au surfaces at low temperatures which provide novel information on the fundamental understanding of Au catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haruta M, Yamada N, Kobayashi T, Iijima S. J Catal, 1989, 115: 301–309

    Article  CAS  Google Scholar 

  2. Bond G, Thompson D. Gold Bull, 2000, 33: 41–50

    Article  CAS  Google Scholar 

  3. Meyer R, Lemire C, Shaikhutdinov SK, Freund HJ. Gold Bull, 2004, 37: 72–124

    Article  CAS  Google Scholar 

  4. Kung MC, Davis RJ, Kung HH. J Phys Chem C, 2007, 111: 11767–11775

    Article  CAS  Google Scholar 

  5. Freund HJ. Chem-Eur J, 2010, 16: 9384–9397

    Article  CAS  Google Scholar 

  6. Min BK, Friend CM. Chem Rev, 2007, 107: 2709–2724

    Article  CAS  Google Scholar 

  7. Gong J, Mullins CB. Acc Chem Res, 2009, 42: 1063–1073

    Article  CAS  Google Scholar 

  8. Huang W. CHAPTER 15. Model catalysts for Au catalysis: from single crystals to supported nanoparticles. In: Ma Z, Dai S, Eds. Heterogeneous Gold Catalysts and Catalysis. Cambridge: The Royal Society of Chemistry, 2014. 533–574

    Google Scholar 

  9. Outka DA, Madix RJ. Surf Sci, 1987, 179: 351–360

    Article  CAS  Google Scholar 

  10. Canning NDS, Outka D, Madix RJ. Surf Sci, 1984, 141: 240–254

    Article  CAS  Google Scholar 

  11. Saliba N, Parker DH, Koel BE. Surf Sci, 1998, 410: 270–282

    Article  CAS  Google Scholar 

  12. Gottfried JM, Schmidt KJ, Schroeder SLM, Christmann K. Surf Sci, 2003, 525: 184–196

    Article  CAS  Google Scholar 

  13. Deng XY, Min BK, Guloy A, Friend CM. J Am Chem Soc, 2005, 127: 9267–9270

    Article  CAS  Google Scholar 

  14. Ojifinni RA, Gong J, Froemming NS, Flaherty DW, Pan M, Henkelman G, Mullins CB. J Am Chem Soc, 2008, 130: 11250–11251

    Article  CAS  Google Scholar 

  15. Lazaga Mark A, Wickham David T, Parker Deborah H, Kastanas George N, Koel Bruce E. Reactivity of oxygen adatoms on the Au(111) surface. In: Oyama ST, Hightower JW, Eds. Catalytic Selective Oxidation. Washington, DC: American Chemical Society, 1993. 90–109

    Chapter  Google Scholar 

  16. Gottfried JM. CO oxidation over gold adsorption and reaction of oxygen, carbon monoxide and carbon dioxide on an Au(110)-(1×2) surface. Dissertation for the Doctoral Degree. Berlin: Free University of Berlin, 2003

    Google Scholar 

  17. Gottfried JM, Christmann K. Surf Sci, 2004, 566–568: 1112–1117

    Article  Google Scholar 

  18. Biener J, Biener MM, Nowitzki T, Hamza AV, Friend CM, Zielasek V, Bäumer M. ChemPhysChem, 2006, 7: 1906–1908

    Article  CAS  Google Scholar 

  19. Kim J, Samano E, Koel BE. J Phys Chem B, 2006, 110: 17512–17517

    Article  CAS  Google Scholar 

  20. Kim TS, Gong J, Ojifinni RA, White JM, Mullins CB. J Am Chem Soc, 2006, 128: 6282–6283

    Article  CAS  Google Scholar 

  21. Min BK, Alemozafar AR, Pinnaduwage D, Deng X, Friend CM. J Phys Chem B, 2006, 110: 19833–19838

    Article  CAS  Google Scholar 

  22. Gong J, Ojifinni R, Kim T, Stiehl J, McClure S, White JM, Mullins CB. Top Catal, 2007, 44: 57–63

    Article  CAS  Google Scholar 

  23. Ojifinni RA, Froemming NS, Gong J, Pan M, Kim TS, White JM, Henkelman G, Mullins CB. J Am Chem Soc, 2008, 130: 6801–6812

    Article  CAS  Google Scholar 

  24. Baker TA, Friend CM, Kaxiras E. J Chem Theory Comput, 2009, 6: 279–287

    Article  Google Scholar 

  25. Baker TA, Xu B, Liu X, Kaxiras E, Friend CM. J Phys Chem C, 2009, 113: 16561–16564

    Article  CAS  Google Scholar 

  26. Samano E, Kim J, Koel B. Catal Lett, 2009, 128: 263–267

    Article  CAS  Google Scholar 

  27. Senanayake SD, Stacchiola D, Liu P, Mullins CB, Hrbek J, Rodriguez JA. J Phys Chem C, 2009, 113: 19536–19544

    Article  CAS  Google Scholar 

  28. Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK. Angew Chem Int Ed, 2008, 47: 4835–4839

    Article  CAS  Google Scholar 

  29. Qian K, Luo L, Bao H, Hua Q, Jiang Z, Huang W. Catal Sci Technol, 2013, 3: 679–687

    Article  CAS  Google Scholar 

  30. Chen S, Luo L, Jiang Z, Huang W. ACS Catal, 2015, 5: 1653–1662

    Article  CAS  Google Scholar 

  31. Wu Z, Ma Y, Zhang Y, Xu L, Chen B, Yuan Q, Huang W. J Phys Chem C, 2012, 116: 3608–3617

    Article  CAS  Google Scholar 

  32. Wu Z, Xu L, Zhang W, Ma Y, Yuan Q, Jin Y, Yang J, Huang W. J Catal, 2013, 304: 112–122

    Article  CAS  Google Scholar 

  33. Wu Z, Jiang Z, Jin Y, Xiong F, Huang W. J Phys Chem C, 2014, 118: 26258–26263

    Article  CAS  Google Scholar 

  34. Wu Z, Jin Y, Xu L, Yuan Q, Xiong F, Jiang Z, Huang W. J Phys Chem C, 2014, 118: 8397–8405

    Article  CAS  Google Scholar 

  35. Xu L, Ma Y, Zhang Y, Chen B, Wu Z, Jiang Z, Huang W. J Phys Chem C, 2010, 114: 17023–17029

    Article  CAS  Google Scholar 

  36. Peters KF, Steadman P, Isern H, Alvarez J, Ferrer S. Surf Sci, 2000, 467: 10–22

    Article  CAS  Google Scholar 

  37. Yim WL, Nowitzki T, Necke M, Schnars H, Nickut P, Biener J, Biener MM, Zielasek V, Al-Shamery K, Klüner T, Bäumer M. J Phys Chem C, 2006, 111: 445–451

    Article  Google Scholar 

  38. Weststrate CJ, Lundgren E, Andersen JN, Rienks EDL, Gluhoi AC, Bakker JW, Groot IMN, Nieuwenhuys BE. Surf Sci, 2009, 603: 2152–2157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Jiang, Z., Jin, Y. et al. Reaction heat-driven CO2 desorption during CO oxidation on Au(997) at low temperatures. Sci. China Chem. 59, 752–759 (2016). https://doi.org/10.1007/s11426-015-5510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5510-y

Keywords

Navigation