Science China Chemistry

, Volume 58, Issue 12, pp 1845–1852 | Cite as

Comparative study on the methods for predicting the reactive site of nucleophilic reaction

Articles

Abstract

Predicting the reactivity of nucleophilic reaction at different sites has important theoretical and practical significance. Many prediction methods solely based on the electronic structure of reactants have been proposed. In this paper, detailed comparative analyses on the reliability of 14 methods are carried out and three series of molecules, carbonyl compounds, aromatic hydrocarbons and pyridine derivatives are exploited as test systems. It is found that the methods reflecting local electronic softness, such as condensed dual descriptor, have satisfactory prediction ability; while the ones reflecting electrostatic effect, such as atomic charge analysis and electrostatic potential analysis, have evidently worse overall performance. For all systems of interest, condensed dual descriptor and Hirshfeld charge display the most robust predictive capacity.

Keywords

nucleophilic reaction molecular surface Fukui function dual descriptor electrostatic potential atomic charge orbital composition relative electrophilicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wade Jr LG. Organic Chemistry. 6th Ed. New Jersey: Pearson Education International, 2006Google Scholar
  2. 2.
    Cao CZ, Wu YX. Recent progress in quantifying substituent effects. Sci China Chem, 2013, 56: 883–910CrossRefGoogle Scholar
  3. 3.
    Marx D, Hutter J. Ab Initio Molecular Dynamics-Basic Theory and Advanced Methods. Cambridge: Cambridge University Press, 2009CrossRefGoogle Scholar
  4. 4.
    Esteves PM, de M. Carneiro JW, Cardoso SP, Barbosa AGH, Laali KK, Rasul G, Surya Rrakash GK, Olah GA. Unified mechanistic concept of electrophilic aromatic nitration: convergence of computational results and experimental data. J Am Chem Soc, 2003, 125: 4836–4849CrossRefGoogle Scholar
  5. 5.
    Jensen F. Introduction to Computational Chemistry. 2nd Ed. West Sussex: John Wiley & Sons, 2007. 487–492Google Scholar
  6. 6.
    Parr RG, Yang W. Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc, 1984, 106: 4049–4050CrossRefGoogle Scholar
  7. 7.
    Morell C, Grand A, Toro-Labbé A. New dual descriptor for chemical reactivity. J Phys Chem A, 2004, 109: 205–212CrossRefGoogle Scholar
  8. 8.
    Sjoberg P, Politzer P. Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes. J Phys Chem, 1990, 94: 3959–3961CrossRefGoogle Scholar
  9. 9.
    Lu T, Chen FW. Comparison of computational methods for atomic charges. Acta Phys Chim Sin, 2012, 28: 1–18Google Scholar
  10. 10.
    Roy RK. Stockholders charge partitioning technique. A reliable electron population analysis scheme to predict intramolecular reactivity sequence. J Phys Chem A, 2003, 107: 10428–10434CrossRefGoogle Scholar
  11. 11.
    Fu R, Lu T, Chen FW. Comparing methods for predicting the reactive site of electrophilic substitution. Acta Phys Chim Sin, 2014, 30: 628–639Google Scholar
  12. 12.
    Liu SB. Conceptual density functional theory and some recent developments. Acta Phys Chim Sin, 2009, 25: 590–600Google Scholar
  13. 13.
    Yang W, Mortier WJ. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc, 1986, 108: 5708–5711CrossRefGoogle Scholar
  14. 14.
    Jin JL, Li HB, Lu T, Duan YA, Geng Y, Wu Y, Su ZM. Density functional studies on photophysical properties and chemical reactivities of the triarylboranes: effect of the constraint of planarity. J Mol Model, 2013, 19: 3437–3446CrossRefGoogle Scholar
  15. 15.
    Oláh J, van Alsenoy C, Sannigrahi AB. Condensed Fukui functions derived from stockholder charges: assessment of their performance as local reactivity descriptors. J Phys Chem A, 2002, 106: 3885–3890CrossRefGoogle Scholar
  16. 16.
    Fukui K. Theory of Orientation and Stereoselection. Berlin: Springer, 1970. 1–85CrossRefGoogle Scholar
  17. 17.
    Lu T, Chen FW. Calculation of molecular orbital composition. Acta Chim Sin, 2011, 69: 2393–2406Google Scholar
  18. 18.
    Roy RK, Krishnamurti S, Geerlings P, Pal S. Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: carbonyl compounds. J Phys Chem A, 1998, 102: 3746–3755CrossRefGoogle Scholar
  19. 19.
    Mulliken RS. Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys, 1955, 23: 1833–1840CrossRefGoogle Scholar
  20. 20.
    Breneman CM, Wiberg KB. Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis. J Comput Chem, 1990, 11: 361–373CrossRefGoogle Scholar
  21. 21.
    Weinhold F. Natural bond orbital methods. In: Schleyer PVR. Encyclopedia of Computational Chemistry. West Sussex: John Wiley & Sons, 1998. 1792–1811Google Scholar
  22. 22.
    Hirshfeld FL. Bonded-atom fragments for describing molecular charge densities. Theor Chem Acc, 1977, 44: 129–138CrossRefGoogle Scholar
  23. 23.
    Lu T, Chen F. Atomic dipole moment corrected hirshfeld population method. J Theor Comp Chem, 2012, 11: 163–183CrossRefGoogle Scholar
  24. 24.
    Murray JS, Politzer P. The electrostatic potential: an overview. WIREs Comp Mol Sci, 2011, 1: 153–163CrossRefGoogle Scholar
  25. 25.
    Lipkowitz KB, Cundari TR, Boyd DB. Reviews in Computational Chemistry. New York: John Wiley & Sons, 1991. 273–312CrossRefGoogle Scholar
  26. 26.
    Geerlings P, Langenaeker W, De Proft F. Molecular electrostatic potentials vs. DFT descriptors of reactivity. In: Murray JS, Sen K, Eds. Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier Science BV, 1996, 3: 587–617CrossRefGoogle Scholar
  27. 27.
    Politzer P, Murray JS. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc, 2002, 108: 134–142CrossRefGoogle Scholar
  28. 28.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C. Properties of atoms in molecules: atomic volumes. J Am Chem Soc, 1987, 109: 7968–7979CrossRefGoogle Scholar
  29. 29.
    Lu T, Chen FW. Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model, 2012, 38: 314–323CrossRefGoogle Scholar
  30. 30.
    Pearson RG. Hard and soft acids and bases. J Am Chem Soc, 1963, 85: 3533–3539CrossRefGoogle Scholar
  31. 31.
    Politzer P, Murray JS. The average local ionization energy: concepts and applications. In: Toro-Labbé A, Ed. Theoretical Aspects of Chemical Reactivity. Amsterdam: Elsevier, 2007. 119–137CrossRefGoogle Scholar
  32. 32.
    Domingo LR, Pérez P, Sáez JA. Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv, 2013, 3: 1486–1494CrossRefGoogle Scholar
  33. 33.
    Lu T, Chen FW. Meaning and functional form of the electron localization function. Acta Phys Chim Sin, 2011, 27: 2786–2792Google Scholar
  34. 34.
    Bader RFW, Chang C. Properties of atoms in molecules: electrophilic aromatic substitution. J Phys Chem, 1989, 93: 2946–2956CrossRefGoogle Scholar
  35. 35.
    Murray JS, Peralta-Inga Z, Politzer P, Ekanayaka K, LeBreton P. Computational characterization of nucleotide bases: molecular surface electrostatic proteins and local ionization energies, and local polarization energies. Int J Quantum Chem, 2001, 83: 245–254CrossRefGoogle Scholar
  36. 36.
    Ehresmann B, Martin B, Horn AHC, Clark T. Local molecular properties and their use in predicting reactivity. J Mol Model, 2003, 9: 342–347CrossRefGoogle Scholar
  37. 37.
    Parthasarathi R, Padmanabhan J, Elango M, Subramanian V, Chattaraj PK. Intermolecular reactivity through the generalized philicity concept. Chem Phys Lett, 2004, 394: 225–230CrossRefGoogle Scholar
  38. 38.
    Morell C, Grand A, Toro-Labbé A. New dual descriptor for chemical reactivity. J Phys Chem A, 2005, 109: 205–212CrossRefGoogle Scholar
  39. 39.
    Oláh J, van Alsenoy C, Sannigrahi AB. Condensed Fukui functions derived from stockholder charges: assessment of their performance as local reactivity descriptors. J Phys Chem A, 2002, 106: 3885–3890CrossRefGoogle Scholar
  40. 40.
    Politzer P, Murray JS. Molecular electrostatic potentials and chemical reactivity. In: Lipkowitz KB, Boyd DB, Eds. Reviews in Computational Chemistry. Volume 2. New York: John Wiley & Sons, 1991: 273–312CrossRefGoogle Scholar
  41. 41.
    Wang JT, Hu Q, Zhang B, Wang Y. Organic Chemistry. 2nd Ed. Tianjin: NanKai University Press, 1993Google Scholar
  42. 42.
    Morrison RT, Boyd RN. Organic Chemistry. 6th Ed. New Jersey: Prentice Hall, Inc., 1992Google Scholar
  43. 43.
    Smith MB, March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. New York: John Wiley & Sons, 2007Google Scholar
  44. 44.
    Chupakhin ON, Charushin VN, van der Plas HC. Nucleophilic Aromatic Substitution of Hydrogen. London: Academic Press, 2012Google Scholar
  45. 45.
    Terrier, François. Modern Nucleophilic Aromatic Substitution. New York: John Wiley & Sons, 2013CrossRefGoogle Scholar
  46. 46.
    Deuri S, Phukan P. A DFT study on nucleophilicity and site selectivity of nitrogen nucleophiles. Comput Theor Chem, 2012, 980: 49–55CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vrevon T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Menucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomparts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Namayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Version B.02. Wallingford, CT: Gaussian, Inc., 2004Google Scholar
  48. 48.
    Becke AD. A new mixing of Hartree-Fock and local densityfunctional theories. J Chem Phys, 1993, 98: 1372–1377CrossRefGoogle Scholar
  49. 49.
    Lu T, Chen FW. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem, 2012, 33: 580–592CrossRefGoogle Scholar
  50. 50.
    Multiwfn website: http://Multiwfn.codeplex.com (accessed on 2014-10-10)Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Engineering, School of Chemical and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Kein Research Center for Natural SciencesBeijingChina

Personalised recommendations