Skip to main content
Log in

Visible light-harvesting tricarbonyl Re(I) complex: synthesis and application in intracellular photodynamic effect and luminescence imaging

  • Articles
  • SPECIAL TOPIC · Fluorescent Chemical/Biological Sensors and Imaging
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Re(I) tricarbonyl rhenium(I) complexes attracted much attention owing to the good cellular uptake ability and rich photophysical properties. However, normally Re(I) complexes show short triplet state lifetime and weak absorption in the visible spectra region, and the absorption wavelength usually is shorter than 450 nm. These features are detrimental to the applications of Re(I) complexes in the areas such as photodynamic therapy (PDT) and luminescence bioimaging. Herein, a novel tricarbonyl rhenium(I) complex Re-1 with strong visible light-absorbing ability (624 nm, ε=5.69×104 L/(mol cm)), long-lived triplet excited state (τ T=448.9 μs) and moderate fluorescence quantum yield (Φ F=41.6%) was prepared. The photophysical properties of Re-1 were studied with steady state UV-Vis absorption and luminescence spectroscopies, nanosecond transient absorption spectroscopy, as well as DFT/TDDFT calculations. Re-1 was used for intracellular PDT and luminescence imaging studies. The results indicate that Re-1 shows low dark toxicity, but it is able to kill cancer cells on illumination with 635 nm LED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Striplin DR, Crosby GA. Coord Chem Rev, 2001, 211: 163?175

  2. Lo KKW, Tsang KHK, Nianyong Z. Organometallics, 2006, 25: 3220–3227

    Article  CAS  Google Scholar 

  3. Lo KKW, Tsang KHK, Sze KS. Inorg Chem, 2006, 45: 1714–1722

    Article  CAS  Google Scholar 

  4. Lo KKW, Zhang KY, Li SPY. Eur J Inorg Chem, 2011, 24: 3551–3568

    Article  Google Scholar 

  5. El Nahhas A, Consani C, Blanco-Rodríguez AM, Lancaster KM, Braem O, Cannizzo A, Towrie M, Clark LP, Zalis S, Chergui M, Vlcek Jr A. Inorg Chem, 2011, 50: 2932–2943

    Article  Google Scholar 

  6. Yarnell JE, Deaton JC, McCusker CE, Castellano FN. Inorg Chem, 2011, 50: 7820–7830

    Article  CAS  Google Scholar 

  7. McLean TM, Moody JL, Waterland MR, Telfer SG. Inorg Chem, 2012, 51: 446–455

    Article  CAS  Google Scholar 

  8. Louie MW, Fong TT, Lo KK. Inorg Chem, 2011, 50: 9465–9471

    Article  CAS  Google Scholar 

  9. Balasingham RG, Thorp-Greenwood FL, Williams CF, Coogan MP, Pope SJA. Inorg Chem, 2012, 51: 1419–1426

    Article  CAS  Google Scholar 

  10. Guttentag M, Rodenberg A, Kopelent R, Probst B, Buchwalder C, Brandstatter M, Hamm P, Alberto R. Eur J Inorg Chem, 2012, 1: 59–64

    Article  Google Scholar 

  11. Yi X, Zhao J, Sun J, Guo S, Zhang HL. Dalton Trans, 2013, 42: 2062–2074

    Article  CAS  Google Scholar 

  12. Yi X, Zhao J, Wu W, Huang D, Ji S, Sun J. Dalton Trans, 2012, 41: 8931–8940

    Article  CAS  Google Scholar 

  13. Leonidova A, Pierroz V, Rubbiani R, Heier J, Ferrari S, Gasser G. Dalton Trans, 2014, 43: 4287–4294

    Article  CAS  Google Scholar 

  14. Leonidova A, Pierroz V, Rubbiani R, Lan Y, Schmitz AG, Kaech A, Sigel RKO, Ferrari S, Gasser G. Chem Sci, 2014, 5: 4044–4056

    Article  CAS  Google Scholar 

  15. Fernandez-Moreira V, Thorp-Greenwood FL, Coogan MP. Chem Commun, 2010, 46: 186–202

    Article  CAS  Google Scholar 

  16. Zhao Q, Li F, Huang C. Chem Soc Rev, 2010, 39: 3007–3030

    Article  CAS  Google Scholar 

  17. Lincoln R, Kohler L, Monro S, Yin H, Stephenson M, Zong R, Chouai A, Dorsey C, Hennigar R, Thummel RP, McFarland SA. J Am Chem Soc, 2013, 135: 17161–17175

    Article  CAS  Google Scholar 

  18. Feng Y, Cheng J, Zhou L, Zhou X, Xiang H. Analyst, 2012, 137: 4885–4901

    Article  CAS  Google Scholar 

  19. Lu H, Mack J, Yang Y, Shen Z. Chem Soc Rev, 2014, 43: 4778–4823

    Article  CAS  Google Scholar 

  20. Yang Y, Guo Q, Chen H, Zhou Z, Guo Z, Shen Z. Chem Commun, 2013, 49: 3940–3942

    Article  CAS  Google Scholar 

  21. Jiang XD, Su Y, Yue S, Li C, Yu H, Zhang H, Sun CL, Xiao LJ. RSC Adv, 2015, 5: 16735–16739

    Article  CAS  Google Scholar 

  22. Yu X, Jia X, Yang X, Liu W, Qin W. RSC Adv, 2014, 4: 23571–23579

    Article  CAS  Google Scholar 

  23. Petrov RR, Knight L, Chen SR, Wager-Miller J, McDaniel SW, Diaz F, Barth F, Pan HL, Mackie K, Cavasotto CN, Diaz P. Eur J Med Chem, 2013, 69: 881–907

    Article  CAS  Google Scholar 

  24. Wu W, Guo H, Wu W, Ji S, Zhao J. J Org Chem, 2011, 76: 7056–7064

    Article  CAS  Google Scholar 

  25. Wong WY. Dalton Trans, 2007, 40: 4495–4510

    Article  Google Scholar 

  26. Grosshenny V, Romero FM, Ziessel R. J Org Chem, 1997, 62: 1491–1500

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalman G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene, M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Wallingford, CT: Gaussian, Inc., 2009

    Google Scholar 

  28. Lau JSY, Lee PK, Tsang KHK, Ng CHC, Lam YW, Cheng SH, Lo KK. Inorg Chem, 2009, 48: 708–718

    Article  CAS  Google Scholar 

  29. Ulrich G, Ziessel R, Harriman A. Angew Chem Int Ed, 2008, 47: 1184–1201

    Article  CAS  Google Scholar 

  30. Wang F, Zhou L, Zhao C, Wang R, Fei Q, Luo S, Guo Z, Tian H, Zhu WH. Chem Sci, 2015, 6: 2584–2589

    Article  CAS  Google Scholar 

  31. Zhao C, Zhang X, Li K, Zhu S, Guo Z, Zhang L, Wang F, Fei Q, Luo S, Shi P, Tian H, Zhu WH. J Am Chem Soc, 2015, 137: 8490–8498

    Article  CAS  Google Scholar 

  32. Kozhevnikov DN, Kozhevnikov VN, Shafikov MZ, Prokhorov AM, Bruce DW, Williams JAG. Inorg Chem, 2011, 50: 3804–3815

    Article  CAS  Google Scholar 

  33. Liu Y, Guo H, Zhao J. Chem Commun, 2011, 47: 11471–11473

    Article  CAS  Google Scholar 

  34. Lakowicz JR. Principles of Fluorescence Spectroscopy. Chapter 13: Energy Transfer. New York: Springer-Verlag US,2006. 443–475

    Book  Google Scholar 

  35. Vlcek JA. Coord Chem Rev, 2000, 200–202: 933–978

    Article  Google Scholar 

  36. Zhao L, Odaka H, Ono H, Kajimoto S, Hatanaka K, Hobley J, Fukumura H. Photochem Photobiol Sci, 2005, 4: 113–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhang Zhao.

Additional information

Contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, F., Yuan, X., Zhao, J. et al. Visible light-harvesting tricarbonyl Re(I) complex: synthesis and application in intracellular photodynamic effect and luminescence imaging. Sci. China Chem. 59, 70–77 (2016). https://doi.org/10.1007/s11426-015-5491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5491-x

Keywords

Navigation