Jones RR, Bergman RG. p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure. J Am Chem Soc, 1972, 94: 660–661
CAS
Article
Google Scholar
Bergman RG. Reactive 1,4-dehydroaromatics. Acc Chem Res, 1973, 6: 25–31
CAS
Article
Google Scholar
Xiao Y, Hu A. Bergman cyclization in polymer chemistry and material science. Macromol Rapid Commun, 2011, 32: 1688–1698
CAS
Article
Google Scholar
Lee MD, Dunne TS, Siegel MM, Chang CC, Morton GO, Borders DB. Calichemicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calichemicin.gamma.1I. J Am Chem Soc, 1987, 109: 3464–3466
CAS
Article
Google Scholar
Lee MD, Dunne TS, Chang CC, Ellestad GA, Siegel MM, Morton GO, Mcgahren WJ, Borders DB. Calichemicins, a novel family of antitumor antibiotics. 2. Chemistry and structure of calichemicin. gamma.1I. J Am Chem Soc, 1987, 109: 3466–3468
CAS
Article
Google Scholar
Konishi M, Ohkuma H, Tsuno T, Oki T, Vanduyne GD, Clardy J. Crystal and molecular structure of dynemicin A: a novel 1,5-diyn-3-ene antitumor antibiotic. J Am Chem Soc, 1990, 112: 3715–3716
CAS
Article
Google Scholar
Golik J, Clardy J, Dubay G, Groenewold G, Kawaguchi H, Konishi M, Krishnan B, Ohkuma H, Saitoh K, Doyle TW. Esperamicins, a novel class of potent antitumor antibiotics. 2. Structure of esperamicin X. J Am Chem Soc, 1987, 109: 3461–3462
CAS
Article
Google Scholar
Golik J, Dubay G, Groenewold G, Kawaguchi H, Konishi M, Krishnan B, Ohkuma H, Saitoh K, Doyle TW. Esperamicins, a novel class of potent antitumor antibiotics. 3. Structures of esperamicins A1, A2, and A1b. J Am Chem Soc, 1987, 109: 3462–3464
CAS
Article
Google Scholar
Leet JE, Schroeder DR, Hofstead SJ, Golik J, Colson KL, Huang S, Klohr SE, Doyle TW, Matson JA. Kedarcidin, a new chromoprotein antitumor antibiotic: structure elucidation of kedarcidin chromophore. J Am Chem Soc, 1992, 114: 7946–7948
CAS
Article
Google Scholar
Biggins JB, Onwueme KC, Thorson JS. Resistance to enediyne antitumor antibiotics by CalC self-sacrifice. Science, 2003, 301: 1537–1541
CAS
Article
Google Scholar
Basak A, Mandal S, Bag SS. Chelation-controlled Bergman cyclization: synthesis and reactivity of enediynyl ligands. Chem Rev, 2003, 103: 4077–4094
CAS
Article
Google Scholar
Kar M, Basak A. Design, synthesis, and biological activity of unnatural enediynes and related analogues equipped with pH-dependent or phototriggering devices. Chem Rev, 2007, 107: 2861–2890
CAS
Article
Google Scholar
Hatial I, Jana S, Bisai S, Das M, Ghosh AK, Anoop A, Basak A. Trienediynes on a 1,3,5-trisubstituted benzene template: a new approach for enhancement of reactivity. RSC Adv, 2014, 4: 28041–28045
CAS
Article
Google Scholar
Kraka E, Cremer D. Enediynes, enyne-allenes, their reactions, and beyond. Wiley Interdiscipl Rev: Comput Mol Sci, 2014, 4: 285–324
CAS
Google Scholar
Nicolaou KC, Ogawa Y, Zuccarello G, Schweiger EJ, Kumazawa T. Cyclic conjugated enediynes related to calicheamicins and esperamicins: calculations, synthesis, and properties. J Am Chem Soc, 1988, 110: 4866–4868
CAS
Article
Google Scholar
Magnus P, Fortt S, Pitterna T, Snyder JP. Synthetic and mechanistic studies on esperamicin A1 and calichemicin.gamma.1. Molecular strain rather than.pi.- bond proximity determines the cycloaromatization rates of bicyclo[7.3.1]enediynes. J Am Chem Soc, 1990, 112: 4986–4987
CAS
Article
Google Scholar
Snyder JP. Monocyclic enediyne collapse to 1,4-diyl biradicals: a pathway under strain control. J Am Chem Soc, 1990, 112: 5367–5369
CAS
Article
Google Scholar
Klein M, Walenzyk T, Konig B. Electronic effects on the Bergman cyclisation of enediynes. A review. Collect Czech Chem Commun, 2004, 69: 945–965
CAS
Article
Google Scholar
Alabugin IV, Yang WY, Pal R. Photochemical Bergman cyclization and related photoreactions of enediynes. In: Griesbeck A, Oelgemoeller M, Ghetti FBA, Eds. CRC Handbook of Organic Photochemistry and Photobiology. Boca Raton, FL: Taylor and Francis, 2012. 549–592
Google Scholar
Kaya K, Johnson M, Alabugin IV. Opening enediyne scissors wider: pH-dependent DNA photocleavage by meta-diyne lysine conjugates. Photochem Photobiol, 2015, 91: 748–758
CAS
Article
Google Scholar
Campolo D, Arif T, Borie C, Mouysset D, Vanthuyne N, Naubron JV, Bertrand MP, Nechab M. Double transfer of chirality in organocopper- mediated bis(alkylating) cycloisomerization of enediynes. Angew Chem Int Ed, 2014, 53: 3227–3231
CAS
Article
Google Scholar
Nösel P, Müller V, Mader S, Moghimi S, Rudolph M, Braun I, Rominger F, Hashmi ASK. Gold-catalyzed hydroarylating cyclization of 1,2-bis(2-iodoethynyl)benzenes. Adv Synth Catal, 2015, 357: 500–506
Article
Google Scholar
John JA, Tour JM. Synthesis of polyphenylenes and polynaphthalenes by thermolysis of enediynes and dialkynylbenzenes. J Am Chem Soc, 1994, 116: 5011–5012
CAS
Article
Google Scholar
Rettenbacher AS, Perpall MW, Echegoyen L, Hudson J, Smith DW. Radical addition of a conjugated polymer to multilayer fullerenes (carbon nano-onions). Chem Mater, 2007, 19: 1411–1417
CAS
Article
Google Scholar
Smith DW, Shah HV, Perera KPU, Perpall MW, Babb DA, Martin SJ. Polyarylene networks via Bergman cyclopolymerization of bis-orthodiynyl arenes. Adv Funct Mater, 2007, 17: 1237–1246
CAS
Article
Google Scholar
Rule JD, Wilson SR, Moore JS. Radical polymerization initiated by Bergman cyclization. J Am Chem Soc, 2003, 125: 12992–12993
CAS
Article
Google Scholar
Rule JD, Moore JS. Polymerizations initiated by diradicals from cycloaromatization reactions. Macromolecules, 2005, 38: 7266–7273
CAS
Article
Google Scholar
Gerstel P, Barner-Kowollik C. RAFT mediated polymerization of methyl methacrylate initiated by Bergman cyclization: access to high molecular weight narrow polydispersity polymers. Macromol Rapid Commun, 2011, 32: 444–450
CAS
Article
Google Scholar
Tour JM. Soluble oligo- and polyphenylenes. Adv Mater, 1994, 6: 190–198
CAS
Article
Google Scholar
Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W. On-surface formation of one-dimensional polyphenylene through Bergman cyclization. J Am Chem Soc, 2013, 135: 8448–8451
CAS
Article
Google Scholar
Sun S, Dong L, Song D, Huang B, Hu A. Synthesis of polyphenylenes through bergman cyclization of enediynes with long chain alkyl groups. Chin J Polym Sci, 2015, 33: 184–191
CAS
Article
Google Scholar
Cheng X, Ma J, Zhi J, Yang X, Hu A. Synthesis of novel “rod-coil” brush polymers with conjugated backbones through Bergman cyclization. Macromolecules, 2010, 43: 909–913
CAS
Article
Google Scholar
Johnson JP, Bringley DA, Wilson EE, Lewis KD, Beck LW, Matzger AJ. Comparison of “polynaphthalenes” prepared by two mechanistically distinct routes. J Am Chem Soc, 2003, 125: 14708–14709
CAS
Article
Google Scholar
Ma J, Ma X, Deng S, Li F, Hu A. Synthesis of dendronized polymers through Bergman cyclization of enediyne-containing frechet-type dendrimers. J Polym Sci Polym Chem, 2011, 49: 1368–1375
CAS
Article
Google Scholar
Miao C, Zhi J, Sun S, Yang X, Hu A. Formation of conjugated polynaphthalene via bergman cyclization. J Polym Sci Polym Chem, 2010, 48: 2187–2193
CAS
Article
Google Scholar
Sun S, Zhu C, Song D, Li F, Hu A. Preparation of conjugated polyphenylenes from maleimide-based enediynes through thermaltriggered Bergman cyclization polymerization. Polym Chem, 2014, 5: 1241–1247
CAS
Article
Google Scholar
Sun S, Huang B, Li F, Song D, Hu A. Synthesis of chiral polyphenylenes through Bergman cyclization of enediynes with pendant chiral amino ester groups. Chin J Polym Sci, 2015, 33: 743–753
CAS
Article
Google Scholar
Ma J, Cheng X, Ma X, Deng S, Hu A. Functionalization of multiwalled carbon nanotubes with polyesters via bergman cyclization and “grafting from” strategy. J Polym Sci Polym Chem, 2010, 48: 5541–5548
CAS
Article
Google Scholar
Ma J, Deng S, Cheng X, Wei W, Hu A. Covalent surface functionalization of multiwalled carbon nanotubes through bergman cyclization of enediyne-containing dendrimers. J Polym Sci Polym Chem, 2011, 49: 3951–3959
CAS
Article
Google Scholar
Ma X, Li F, Wang Y, Hu A. Functionalization of pristine graphene with conjugated polymers through diradical addition and propagation. Chem Asian J, 2012, 7: 2547–2550
CAS
Article
Google Scholar
Taranekar P, Park JY, Patton D, Fulghum T, Ramon GJ, Advincula R. Conjugated polymer nanoparticles via intramolecular crosslinking of dendrimeric precursors. Adv Mater, 2006, 18: 2461–2465
CAS
Article
Google Scholar
Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev, 2009, 109: 49–87
CAS
Article
Google Scholar
Parrott MC, Benhabbour SR, Saab C, Lemon JA, Parker S, Valliant JF, Adronov A. Synthesis, radiolabeling, and bio-imaging of highgeneration polyester dendrimers. J Am Chem Soc, 2009, 131: 2906–2916
CAS
Article
Google Scholar
Helms B, Meijer EW. Chemistry: dendrimers at work. Science, 2006, 313: 929–930
CAS
Article
Google Scholar
Mecerreyes D, Lee V, Hawker CJ, Hedrick JL, Wursch A, Volksen W, Magbitang T, Huang E, Miller RD. A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution. Adv Mater, 2001, 13: 204–208
CAS
Article
Google Scholar
Adkins CT, Muchalski H, Harth E. Nanoparticles with individual site-isolated semiconducting polymers from intramolecular chain collapse processes. Macromolecules, 2009, 42: 5786–5792
CAS
Article
Google Scholar
Moreno AJ, Lo Verso F, Sanchez-Sanchez A, Arbe A, Colmenero J, Pomposo JA. Advantages of orthogonal folding of single polymer chains to soft nanoparticles. Macromolecules, 2013, 46: 9748–9759
CAS
Article
Google Scholar
Wong EHH, Lam SJ, Nam E, Qiao GG. Biocompatible single-chain polymeric nanoparticles via organo-catalyzed ring-opening polymerization. ACS Macro Lett, 2014, 3: 524–528
CAS
Article
Google Scholar
Croce TA, Hamilton SK, Chen ML, Muchalski H, Harth E. Alternative o-quinodimethane cross-linking precursors for intramolecular chain collapse nanoparticles. Macromolecules, 2007, 40: 6028–6031
CAS
Article
Google Scholar
Ergin M, Kiskan B, Gacal B, Yagci Y. Thermally curable polystyrene via click chemistry. Macromolecules, 2007, 40: 4724–4727
CAS
Article
Google Scholar
Jiang XY, Pu HT, Wang P. Polymer nanoparticles via intramolecular crosslinking of sulfonyl azide functionalized polymers. Polymer, 2011, 52: 3597–3602
CAS
Article
Google Scholar
Hansell CF, Lu A, Patterson JP, O’reilly RK. Exploiting the tetrazine-norbornene reaction for single polymer chain collapse. Nanoscale, 2014, 6: 4102–4107
CAS
Article
Google Scholar
Zhu B, Ma J, Li Z, Hou J, Cheng X, Qian G, Liu P, Hu A. Formation of polymeric nanoparticles via bergman cyclization mediated intramolecular chain collapse. J Mater Chem, 2011, 21: 2679–2683
CAS
Article
Google Scholar
Zhu B, Qian G, Xiao Y, Deng S, Wang M, Hu A. A convergence of photo-bergman cyclization and intramolecular chain collapse towards polymeric nanoparticles. J Polym Sci Polym Chem, 2011, 49: 5330–5338
CAS
Article
Google Scholar
Zhu B, Sun S, Wang Y, Deng S, Qian G, Wang M, Hu A. Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J Mater Chem C, 2013, 1: 580–586
CAS
Article
Google Scholar
Qian G, Zhu B, Wang Y, Deng S, Hu A. Size-tunable polymeric nanoreactors for one-pot synthesis and encapsulation of quantum dots. Macromol Rapid Commun, 2012, 33: 1393–1398
CAS
Article
Google Scholar
Yang X, Li Z, Zhi J, Ma J, Hu A. Synthesis of ultrathin mesoporous carbon through bergman cyclization of enediyne self-assembled monolayers in SBA-15. Langmuir, 2010, 26: 11244–11248
CAS
Article
Google Scholar
Li Z, Song D, Zhi J, Hu A. Synthesis of ultrathin ordered porous carbon through bergman cyclization of enediyne self-assembled monolayers on silica nanoparticles. J Phys Chem C, 2011, 115: 15829–15833
CAS
Article
Google Scholar
Li Z, Zhu X, Chen S, Hu A. Coating magnetite nanoparticles with a polyaryl monolayer through Bergman cyclization-mediated polymerization. Chem Asian J, 2013, 8: 560–563
CAS
Article
Google Scholar
Zhi J, Song D, Li Z, Lei X, Hu A. Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors: efficient heterogeneous catalysts for Suzuki-Miyaura cross coupling reaction in aqueous media. Chem Commun, 2011, 47: 10707–10709
CAS
Article
Google Scholar
Deng S, Zhi J, Zhang X, Wu Q, Ding Y, Hu A. Size-controlled synthesis of conjugated polymer nanoparticles in confined nanoreactors. Angew Chem Int Ed, 2014, 53: 14144–14148
CAS
Article
Google Scholar
Deng S, Zhao P, Dai Y, Huang B, Hu A. Synthesis of soluble conjugated polymeric nanoparticles through heterogeneous Suzuki coupling reaction. Polymer, 2015, 64: 216–220
CAS
Article
Google Scholar
Zhi J, Deng S, Zhang Y, Wang Y, Hu A. Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials. J Mater Chem A, 2013, 1: 3171–3176
CAS
Article
Google Scholar
Zhi J, Deng S, Wang Y, Hu A. Highly ordered metal oxide nanorods inside mesoporous Silica supported carbon nanomembranes: high performance electrode materials for symmetrical supercapacitor devices. J Phys Chem C, 2015, 119: 8530–8536
CAS
Article
Google Scholar
Zhi J, Wang Y, Deng S, Hu A. Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. RSC Adv, 2014, 4: 40296–40300
CAS
Article
Google Scholar
Mohamed RK, Peterson PW, Alabugin IV. Concerted reactions that produce diradicals and zwitterions: electronic, steric, conformational, and kinetic control of cycloaromatization processes. Chem Rev, 2013, 113: 7089–7129
CAS
Article
Google Scholar
Peterson PW, Mohamed RK, Alabugin IV. How to lose a bond in two ways—the diradical/zwitterion dichotomy in cycloaromatization reactions. Eur J Org Chem, 2013: 2505–2527
Google Scholar
Perrin CL, Rodgers BL, O’connor JM. Nucleophilic addition to a p-benzyne derived from an enediyne: a new mechanism for halide incorporation into biomolecules. J Am Chem Soc, 2007, 129: 4795–4799
CAS
Article
Google Scholar
Hansmann MM, Tšupova S, Rudolph M, Rominger F, Hashmi ASK. Gold-catalyzed cyclization of diynes: controlling the mode of 5-endo versus 6-endo cyclization—an experimental and theoretical study by utilizing diethynylthiophenes. Chem Eur J, 2014, 20: 2215–2223
CAS
Article
Google Scholar
Gulevskaya AV, Tyaglivy AS. Nucleophilic cyclizations of enediynes as a method for polynuclear heterocycle synthesis. Chem Heterocycl Comp, 2012, 48: 82–94
CAS
Article
Google Scholar