Science China Chemistry

, Volume 58, Issue 11, pp 1710–1723 | Cite as

Recent advances of the Bergman cyclization in polymer science

  • Shudan Chen
  • Aiguo HuEmail author
Reviews SPECIAL TOPIC Progress in Synthetic Polymer Chemistry


The Bergman cyclization has strongly impacted on a number of fields including pharmaceutics, synthetic chemistry, and material science. The diradical intermediates stemmed from enediynes can not only cause DNA cleavage under physiological conditions but also function as monomer or initiator participants in polymer science. The homo-polymerization of enediynes through the Bergman cyclization to fabricate conjugated polymers is a fascinating strategy due to the advantages of facial operation, high efficiency, tailored structure, and catalyst-free operation. Moreover, conjugated polymers generated through the Bergman cyclization show many remarkable properties, such as excellent thermal stability, good solubility, and processability, which enables these polymers to be further manufactured into carbon-rich materials. Recent times have seen extensive efforts devoted to the application of the Bergman cyclization in polymer science and materials chemistry. A variety of synthetic strategies have been developed to fabricate structurally unique materials via the Bergman cyclization, including the fabrication of rod-like polymers with polyester, dendrimers and chiral imide side chains, functionalization of carbon nanomaterials by surface-grafting conjugated polymers, formation of nanoparticles by intramolecular collapse of single polymer chains, and the construction of carbon nanomembranes with different morphologies. Future developments involving the Bergman cyclization in polymer science, probably by altering the reaction mechanism to precisely control the microstructure of polymeric products, are also proposed in this review article.


Bergman cyclization enediynes conjugated polymer carbon material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones RR, Bergman RG. p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure. J Am Chem Soc, 1972, 94: 660–661CrossRefGoogle Scholar
  2. 2.
    Bergman RG. Reactive 1,4-dehydroaromatics. Acc Chem Res, 1973, 6: 25–31CrossRefGoogle Scholar
  3. 3.
    Xiao Y, Hu A. Bergman cyclization in polymer chemistry and material science. Macromol Rapid Commun, 2011, 32: 1688–1698CrossRefGoogle Scholar
  4. 4.
    Lee MD, Dunne TS, Siegel MM, Chang CC, Morton GO, Borders DB. Calichemicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calichemicin.gamma.1I. J Am Chem Soc, 1987, 109: 3464–3466CrossRefGoogle Scholar
  5. 5.
    Lee MD, Dunne TS, Chang CC, Ellestad GA, Siegel MM, Morton GO, Mcgahren WJ, Borders DB. Calichemicins, a novel family of antitumor antibiotics. 2. Chemistry and structure of calichemicin. gamma.1I. J Am Chem Soc, 1987, 109: 3466–3468CrossRefGoogle Scholar
  6. 6.
    Konishi M, Ohkuma H, Tsuno T, Oki T, Vanduyne GD, Clardy J. Crystal and molecular structure of dynemicin A: a novel 1,5-diyn-3-ene antitumor antibiotic. J Am Chem Soc, 1990, 112: 3715–3716CrossRefGoogle Scholar
  7. 7.
    Golik J, Clardy J, Dubay G, Groenewold G, Kawaguchi H, Konishi M, Krishnan B, Ohkuma H, Saitoh K, Doyle TW. Esperamicins, a novel class of potent antitumor antibiotics. 2. Structure of esperamicin X. J Am Chem Soc, 1987, 109: 3461–3462CrossRefGoogle Scholar
  8. 8.
    Golik J, Dubay G, Groenewold G, Kawaguchi H, Konishi M, Krishnan B, Ohkuma H, Saitoh K, Doyle TW. Esperamicins, a novel class of potent antitumor antibiotics. 3. Structures of esperamicins A1, A2, and A1b. J Am Chem Soc, 1987, 109: 3462–3464CrossRefGoogle Scholar
  9. 9.
    Leet JE, Schroeder DR, Hofstead SJ, Golik J, Colson KL, Huang S, Klohr SE, Doyle TW, Matson JA. Kedarcidin, a new chromoprotein antitumor antibiotic: structure elucidation of kedarcidin chromophore. J Am Chem Soc, 1992, 114: 7946–7948CrossRefGoogle Scholar
  10. 10.
    Biggins JB, Onwueme KC, Thorson JS. Resistance to enediyne antitumor antibiotics by CalC self-sacrifice. Science, 2003, 301: 1537–1541CrossRefGoogle Scholar
  11. 11.
    Basak A, Mandal S, Bag SS. Chelation-controlled Bergman cyclization: synthesis and reactivity of enediynyl ligands. Chem Rev, 2003, 103: 4077–4094CrossRefGoogle Scholar
  12. 12.
    Kar M, Basak A. Design, synthesis, and biological activity of unnatural enediynes and related analogues equipped with pH-dependent or phototriggering devices. Chem Rev, 2007, 107: 2861–2890CrossRefGoogle Scholar
  13. 13.
    Hatial I, Jana S, Bisai S, Das M, Ghosh AK, Anoop A, Basak A. Trienediynes on a 1,3,5-trisubstituted benzene template: a new approach for enhancement of reactivity. RSC Adv, 2014, 4: 28041–28045CrossRefGoogle Scholar
  14. 14.
    Kraka E, Cremer D. Enediynes, enyne-allenes, their reactions, and beyond. Wiley Interdiscipl Rev: Comput Mol Sci, 2014, 4: 285–324Google Scholar
  15. 15.
    Nicolaou KC, Ogawa Y, Zuccarello G, Schweiger EJ, Kumazawa T. Cyclic conjugated enediynes related to calicheamicins and esperamicins: calculations, synthesis, and properties. J Am Chem Soc, 1988, 110: 4866–4868CrossRefGoogle Scholar
  16. 16.
    Magnus P, Fortt S, Pitterna T, Snyder JP. Synthetic and mechanistic studies on esperamicin A1 and calichemicin.gamma.1. Molecular strain rather than.pi.- bond proximity determines the cycloaromatization rates of bicyclo[7.3.1]enediynes. J Am Chem Soc, 1990, 112: 4986–4987CrossRefGoogle Scholar
  17. 17.
    Snyder JP. Monocyclic enediyne collapse to 1,4-diyl biradicals: a pathway under strain control. J Am Chem Soc, 1990, 112: 5367–5369CrossRefGoogle Scholar
  18. 18.
    Klein M, Walenzyk T, Konig B. Electronic effects on the Bergman cyclisation of enediynes. A review. Collect Czech Chem Commun, 2004, 69: 945–965CrossRefGoogle Scholar
  19. 19.
    Alabugin IV, Yang WY, Pal R. Photochemical Bergman cyclization and related photoreactions of enediynes. In: Griesbeck A, Oelgemoeller M, Ghetti FBA, Eds. CRC Handbook of Organic Photochemistry and Photobiology. Boca Raton, FL: Taylor and Francis, 2012. 549–592Google Scholar
  20. 20.
    Kaya K, Johnson M, Alabugin IV. Opening enediyne scissors wider: pH-dependent DNA photocleavage by meta-diyne lysine conjugates. Photochem Photobiol, 2015, 91: 748–758CrossRefGoogle Scholar
  21. 21.
    Campolo D, Arif T, Borie C, Mouysset D, Vanthuyne N, Naubron JV, Bertrand MP, Nechab M. Double transfer of chirality in organocopper- mediated bis(alkylating) cycloisomerization of enediynes. Angew Chem Int Ed, 2014, 53: 3227–3231CrossRefGoogle Scholar
  22. 22.
    Nösel P, Müller V, Mader S, Moghimi S, Rudolph M, Braun I, Rominger F, Hashmi ASK. Gold-catalyzed hydroarylating cyclization of 1,2-bis(2-iodoethynyl)benzenes. Adv Synth Catal, 2015, 357: 500–506CrossRefGoogle Scholar
  23. 23.
    John JA, Tour JM. Synthesis of polyphenylenes and polynaphthalenes by thermolysis of enediynes and dialkynylbenzenes. J Am Chem Soc, 1994, 116: 5011–5012CrossRefGoogle Scholar
  24. 24.
    Rettenbacher AS, Perpall MW, Echegoyen L, Hudson J, Smith DW. Radical addition of a conjugated polymer to multilayer fullerenes (carbon nano-onions). Chem Mater, 2007, 19: 1411–1417CrossRefGoogle Scholar
  25. 25.
    Smith DW, Shah HV, Perera KPU, Perpall MW, Babb DA, Martin SJ. Polyarylene networks via Bergman cyclopolymerization of bis-orthodiynyl arenes. Adv Funct Mater, 2007, 17: 1237–1246CrossRefGoogle Scholar
  26. 26.
    Rule JD, Wilson SR, Moore JS. Radical polymerization initiated by Bergman cyclization. J Am Chem Soc, 2003, 125: 12992–12993CrossRefGoogle Scholar
  27. 27.
    Rule JD, Moore JS. Polymerizations initiated by diradicals from cycloaromatization reactions. Macromolecules, 2005, 38: 7266–7273CrossRefGoogle Scholar
  28. 28.
    Gerstel P, Barner-Kowollik C. RAFT mediated polymerization of methyl methacrylate initiated by Bergman cyclization: access to high molecular weight narrow polydispersity polymers. Macromol Rapid Commun, 2011, 32: 444–450CrossRefGoogle Scholar
  29. 29.
    Tour JM. Soluble oligo- and polyphenylenes. Adv Mater, 1994, 6: 190–198CrossRefGoogle Scholar
  30. 30.
    Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W. On-surface formation of one-dimensional polyphenylene through Bergman cyclization. J Am Chem Soc, 2013, 135: 8448–8451CrossRefGoogle Scholar
  31. 31.
    Sun S, Dong L, Song D, Huang B, Hu A. Synthesis of polyphenylenes through bergman cyclization of enediynes with long chain alkyl groups. Chin J Polym Sci, 2015, 33: 184–191CrossRefGoogle Scholar
  32. 32.
    Cheng X, Ma J, Zhi J, Yang X, Hu A. Synthesis of novel “rod-coil” brush polymers with conjugated backbones through Bergman cyclization. Macromolecules, 2010, 43: 909–913CrossRefGoogle Scholar
  33. 33.
    Johnson JP, Bringley DA, Wilson EE, Lewis KD, Beck LW, Matzger AJ. Comparison of “polynaphthalenes” prepared by two mechanistically distinct routes. J Am Chem Soc, 2003, 125: 14708–14709CrossRefGoogle Scholar
  34. 34.
    Ma J, Ma X, Deng S, Li F, Hu A. Synthesis of dendronized polymers through Bergman cyclization of enediyne-containing frechet-type dendrimers. J Polym Sci Polym Chem, 2011, 49: 1368–1375CrossRefGoogle Scholar
  35. 35.
    Miao C, Zhi J, Sun S, Yang X, Hu A. Formation of conjugated polynaphthalene via bergman cyclization. J Polym Sci Polym Chem, 2010, 48: 2187–2193CrossRefGoogle Scholar
  36. 36.
    Sun S, Zhu C, Song D, Li F, Hu A. Preparation of conjugated polyphenylenes from maleimide-based enediynes through thermaltriggered Bergman cyclization polymerization. Polym Chem, 2014, 5: 1241–1247CrossRefGoogle Scholar
  37. 37.
    Sun S, Huang B, Li F, Song D, Hu A. Synthesis of chiral polyphenylenes through Bergman cyclization of enediynes with pendant chiral amino ester groups. Chin J Polym Sci, 2015, 33: 743–753CrossRefGoogle Scholar
  38. 38.
    Ma J, Cheng X, Ma X, Deng S, Hu A. Functionalization of multiwalled carbon nanotubes with polyesters via bergman cyclization and “grafting from” strategy. J Polym Sci Polym Chem, 2010, 48: 5541–5548CrossRefGoogle Scholar
  39. 39.
    Ma J, Deng S, Cheng X, Wei W, Hu A. Covalent surface functionalization of multiwalled carbon nanotubes through bergman cyclization of enediyne-containing dendrimers. J Polym Sci Polym Chem, 2011, 49: 3951–3959CrossRefGoogle Scholar
  40. 40.
    Ma X, Li F, Wang Y, Hu A. Functionalization of pristine graphene with conjugated polymers through diradical addition and propagation. Chem Asian J, 2012, 7: 2547–2550CrossRefGoogle Scholar
  41. 41.
    Taranekar P, Park JY, Patton D, Fulghum T, Ramon GJ, Advincula R. Conjugated polymer nanoparticles via intramolecular crosslinking of dendrimeric precursors. Adv Mater, 2006, 18: 2461–2465CrossRefGoogle Scholar
  42. 42.
    Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev, 2009, 109: 49–87CrossRefGoogle Scholar
  43. 43.
    Parrott MC, Benhabbour SR, Saab C, Lemon JA, Parker S, Valliant JF, Adronov A. Synthesis, radiolabeling, and bio-imaging of highgeneration polyester dendrimers. J Am Chem Soc, 2009, 131: 2906–2916CrossRefGoogle Scholar
  44. 44.
    Helms B, Meijer EW. Chemistry: dendrimers at work. Science, 2006, 313: 929–930CrossRefGoogle Scholar
  45. 45.
    Mecerreyes D, Lee V, Hawker CJ, Hedrick JL, Wursch A, Volksen W, Magbitang T, Huang E, Miller RD. A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution. Adv Mater, 2001, 13: 204–208CrossRefGoogle Scholar
  46. 46.
    Adkins CT, Muchalski H, Harth E. Nanoparticles with individual site-isolated semiconducting polymers from intramolecular chain collapse processes. Macromolecules, 2009, 42: 5786–5792CrossRefGoogle Scholar
  47. 47.
    Moreno AJ, Lo Verso F, Sanchez-Sanchez A, Arbe A, Colmenero J, Pomposo JA. Advantages of orthogonal folding of single polymer chains to soft nanoparticles. Macromolecules, 2013, 46: 9748–9759CrossRefGoogle Scholar
  48. 48.
    Wong EHH, Lam SJ, Nam E, Qiao GG. Biocompatible single-chain polymeric nanoparticles via organo-catalyzed ring-opening polymerization. ACS Macro Lett, 2014, 3: 524–528CrossRefGoogle Scholar
  49. 49.
    Croce TA, Hamilton SK, Chen ML, Muchalski H, Harth E. Alternative o-quinodimethane cross-linking precursors for intramolecular chain collapse nanoparticles. Macromolecules, 2007, 40: 6028–6031CrossRefGoogle Scholar
  50. 50.
    Ergin M, Kiskan B, Gacal B, Yagci Y. Thermally curable polystyrene via click chemistry. Macromolecules, 2007, 40: 4724–4727CrossRefGoogle Scholar
  51. 51.
    Jiang XY, Pu HT, Wang P. Polymer nanoparticles via intramolecular crosslinking of sulfonyl azide functionalized polymers. Polymer, 2011, 52: 3597–3602CrossRefGoogle Scholar
  52. 52.
    Hansell CF, Lu A, Patterson JP, O’reilly RK. Exploiting the tetrazine-norbornene reaction for single polymer chain collapse. Nanoscale, 2014, 6: 4102–4107CrossRefGoogle Scholar
  53. 53.
    Zhu B, Ma J, Li Z, Hou J, Cheng X, Qian G, Liu P, Hu A. Formation of polymeric nanoparticles via bergman cyclization mediated intramolecular chain collapse. J Mater Chem, 2011, 21: 2679–2683CrossRefGoogle Scholar
  54. 54.
    Zhu B, Qian G, Xiao Y, Deng S, Wang M, Hu A. A convergence of photo-bergman cyclization and intramolecular chain collapse towards polymeric nanoparticles. J Polym Sci Polym Chem, 2011, 49: 5330–5338CrossRefGoogle Scholar
  55. 55.
    Zhu B, Sun S, Wang Y, Deng S, Qian G, Wang M, Hu A. Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J Mater Chem C, 2013, 1: 580–586CrossRefGoogle Scholar
  56. 56.
    Qian G, Zhu B, Wang Y, Deng S, Hu A. Size-tunable polymeric nanoreactors for one-pot synthesis and encapsulation of quantum dots. Macromol Rapid Commun, 2012, 33: 1393–1398CrossRefGoogle Scholar
  57. 57.
    Yang X, Li Z, Zhi J, Ma J, Hu A. Synthesis of ultrathin mesoporous carbon through bergman cyclization of enediyne self-assembled monolayers in SBA-15. Langmuir, 2010, 26: 11244–11248CrossRefGoogle Scholar
  58. 58.
    Li Z, Song D, Zhi J, Hu A. Synthesis of ultrathin ordered porous carbon through bergman cyclization of enediyne self-assembled monolayers on silica nanoparticles. J Phys Chem C, 2011, 115: 15829–15833CrossRefGoogle Scholar
  59. 59.
    Li Z, Zhu X, Chen S, Hu A. Coating magnetite nanoparticles with a polyaryl monolayer through Bergman cyclization-mediated polymerization. Chem Asian J, 2013, 8: 560–563CrossRefGoogle Scholar
  60. 60.
    Zhi J, Song D, Li Z, Lei X, Hu A. Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors: efficient heterogeneous catalysts for Suzuki-Miyaura cross coupling reaction in aqueous media. Chem Commun, 2011, 47: 10707–10709CrossRefGoogle Scholar
  61. 61.
    Deng S, Zhi J, Zhang X, Wu Q, Ding Y, Hu A. Size-controlled synthesis of conjugated polymer nanoparticles in confined nanoreactors. Angew Chem Int Ed, 2014, 53: 14144–14148CrossRefGoogle Scholar
  62. 62.
    Deng S, Zhao P, Dai Y, Huang B, Hu A. Synthesis of soluble conjugated polymeric nanoparticles through heterogeneous Suzuki coupling reaction. Polymer, 2015, 64: 216–220CrossRefGoogle Scholar
  63. 63.
    Zhi J, Deng S, Zhang Y, Wang Y, Hu A. Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials. J Mater Chem A, 2013, 1: 3171–3176CrossRefGoogle Scholar
  64. 64.
    Zhi J, Deng S, Wang Y, Hu A. Highly ordered metal oxide nanorods inside mesoporous Silica supported carbon nanomembranes: high performance electrode materials for symmetrical supercapacitor devices. J Phys Chem C, 2015, 119: 8530–8536CrossRefGoogle Scholar
  65. 65.
    Zhi J, Wang Y, Deng S, Hu A. Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. RSC Adv, 2014, 4: 40296–40300CrossRefGoogle Scholar
  66. 66.
    Mohamed RK, Peterson PW, Alabugin IV. Concerted reactions that produce diradicals and zwitterions: electronic, steric, conformational, and kinetic control of cycloaromatization processes. Chem Rev, 2013, 113: 7089–7129CrossRefGoogle Scholar
  67. 67.
    Peterson PW, Mohamed RK, Alabugin IV. How to lose a bond in two ways—the diradical/zwitterion dichotomy in cycloaromatization reactions. Eur J Org Chem, 2013: 2505–2527Google Scholar
  68. 68.
    Perrin CL, Rodgers BL, O’connor JM. Nucleophilic addition to a p-benzyne derived from an enediyne: a new mechanism for halide incorporation into biomolecules. J Am Chem Soc, 2007, 129: 4795–4799CrossRefGoogle Scholar
  69. 69.
    Hansmann MM, Tšupova S, Rudolph M, Rominger F, Hashmi ASK. Gold-catalyzed cyclization of diynes: controlling the mode of 5-endo versus 6-endo cyclization—an experimental and theoretical study by utilizing diethynylthiophenes. Chem Eur J, 2014, 20: 2215–2223CrossRefGoogle Scholar
  70. 70.
    Gulevskaya AV, Tyaglivy AS. Nucleophilic cyclizations of enediynes as a method for polynuclear heterocycle synthesis. Chem Heterocycl Comp, 2012, 48: 82–94CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Advanced Polymeric Materials; School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations