Skip to main content
Log in

Two tandem multicomponent reactions for the synthesis of sequence-defined polymers

  • Articles
  • SPECIAL TOPIC Progress in Synthetic Polymer Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Multicomponent polymerizations have become powerful tools for the construction of sequence-defined polymers. Although the Passerini multicomponent reaction has been widely used in the synthesis of sequence-defined polymers, the tandem usage of the Passerini multicomponent reaction and other multicomponent reactions in one-pot for the synthesis of sequence-defined polymers has not been developed until now. In this contribution, we report the tandem usage of the Passerini three-component reaction and the three-component amine-thiol-ene conjugation reaction in one pot for the synthesis of sequence-defined polymers. The Passerini reaction between methacrylic acid, adipaldehyde, and 2-isocyanobutanoate was carried out, affording a new molecule containing two alkene units. Subsequently, an amine and a thiolactone were added to the reaction system, whereupon the three-component amine-thiol-ene conjugating reaction occurred to yield a sequence-defined polymer. This method offers more rapid access to sequence-defined polymers with high molecular diversity and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Matyjaszewski K. Architecturally complex polymers with controlled heterogeneity. Science, 2011, 333: 1104–1105

    Article  CAS  Google Scholar 

  2. Ge ZS, Zhou YM, Xu J, Liu HW, Chen DY, Liu SY. High-efficiency preparation of macrocyclic diblock copolymers via selective click reaction in micellar media. J Am Chem Soc, 2009, 131: 1628–1629

    Article  CAS  Google Scholar 

  3. Yan JJ, Wang ZK, Lin XS, Hong CY, Liang HJ, Pan CY, You YZ. Polymerizing nonfluorescent monomers without incorporating any fluorescent agent produces strong fluorescent polymers. Adv Mater, 2012, 24: 5617–5624

    Article  CAS  Google Scholar 

  4. Kakuchi R. Multicomponent reactions in polymer synthesis. Angew Chem Int Ed, 2014, 53: 46–48

    Article  CAS  Google Scholar 

  5. Guan ZB, Cotts PM, McCord EF, McLain SJ. Chain walking: a new strategy to control polymer topology. Science, 1999, 283: 2059–2062

    Article  CAS  Google Scholar 

  6. You YZ, Yu ZQ, Cui MM, Hong CY. Preparation of photoluminescent nanorings with controllable bioreducibility and stimuli-responsiveness. Angew Chem Int Ed, 2010, 49: 1099–1102

    Article  CAS  Google Scholar 

  7. Lutz JF, Ouchi M, Liu DR, Sawamoto M. Sequence-controlled polymers. Science, 2013, 341: 628–636

    Article  CAS  Google Scholar 

  8. Kreye O, Toth T, Meier MAR. Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. J Am Chem Soc, 2011, 133: 1790–1792

    Article  CAS  Google Scholar 

  9. Li XJ, Qian YF, Liu T, Hu XL, Zhang GY, You YZ, Liu S. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials, 2011, 32: 6595–6605

    Article  CAS  Google Scholar 

  10. Deng XX, Cui Y, Du FS, Li ZC. Functional highly branched polymers from multicomponent polymerization (MCP) based on the ABC type Passerini reaction. Polym Chem, 2014, 5: 3316–3320

    Article  CAS  Google Scholar 

  11. Hu XL, Liu GH, Li Y, Wang XR, Liu SY. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J Am Chem Soc, 2015, 137: 362–368

    Article  CAS  Google Scholar 

  12. Hong CY, You YZ, Wu DC, Liu Y, Pan CY. Thermal control over the topology of cleavable polymers: from linear to hyperbranched structures. J Am Chem Soc, 2007, 129: 5354–5355

    Article  CAS  Google Scholar 

  13. Yan DY, Muller AHE, Matyjaszewski K. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree of branching. Macromolecules, 1997, 30: 7024–7033

    Article  CAS  Google Scholar 

  14. Wang RB, Zhou LZ, Zhou YF, Li GL, Zhu XY, Gu HC, Jiang XL, Li HQ, Wu JL, He L, Guo XQ, Zhu BS, Yan DY. Synthesis and gene delivery of poly(amido amine)s with different branched architecture. Biomacromolecules, 2010, 11: 489–495

    Article  CAS  Google Scholar 

  15. Yan DY, Zhou ZP. Molecular weight distribution of hyperbranched polymers generated from polycondensation of AB(2) type monomers in the presence of multifunctional core moieties. Macromolecules, 1999, 32: 819–824

    Article  CAS  Google Scholar 

  16. Han J, Zheng YC, Zhao B, Li SP, Zhang YC, Gao C. Sequentially hetero-functional, topological polymers by step-growth thiolyne approach. Sci Rep, 2014, 4: 4387

    Google Scholar 

  17. Li SP, Han J, Gao C. High-density and hetero-functional group engineering of segmented hyperbranched polymers via click chemistry. Polym Chem, 2013, 4: 1774–1787

    Article  CAS  Google Scholar 

  18. Han J, Zhao B, Gao YQ, Tang AJ, Gao C. Sequential click synthesis of hyperbranched polymers via the A(2)+CB2 approach. Polym Chem, 2011, 2: 2175–2178

    Article  CAS  Google Scholar 

  19. Yu ZQ, Xu XM, Hong CY, Wu DC, You YZ. A Responsive hyperbranched polymer not only can self-immolate but also can self-cross-link. Macromolecules, 2014, 47: 4136–4143

    Article  CAS  Google Scholar 

  20. Yan JJ, Hong CY, You YZ. An easy method to convert the topologies of macromolecules after polymerization. Macromolecules, 2011, 44: 1247–1251

    Article  CAS  Google Scholar 

  21. Deng XX, Li L, Li ZL, Lv A, Du FS, Li ZC. Sequence regulated poly(ester-amide)s based on Passerini reaction. Acs Macro Lett, 2012, 1: 1300–1303

    Article  CAS  Google Scholar 

  22. Li L, Lv A, Deng XX, Du FS, Li ZC. Facile synthesis of photo-cleavable polymers via Passerini reaction. Chem Commun, 2013, 49: 8549–8551

    Article  CAS  Google Scholar 

  23. Lv A, Deng XX, Li L, Li ZL, Wang YZ, Du FS, Li ZC. Facile synthesis of multi-block copolymers containing poly(ester-amide) segments with an ordered side group sequence. Polym Chem, 2013, 4: 3659–3662

    Article  CAS  Google Scholar 

  24. Li L, Deng XX, Li ZL, Du FS, Li ZC. Multifunctional photodegradable polymers for reactive micropatterns. Macromolecules, 2014, 47: 4660–4667

    Article  CAS  Google Scholar 

  25. Yan JJ, Wang D, Wu DC, You YZ. Synthesis of sequence-ordered polymers via sequential addition of monomers in one pot. Chem Commun, 2013, 49: 6057–6059

    Article  CAS  Google Scholar 

  26. Kan XW, Deng XX, Du FS, Li ZC. Concurrent oxidation of alcohols and the Passerini three-component polymerization for the synthesis of functional poly(ester amide)s. Macromol Chem Phys, 2014, 215: 2221–2228

    Article  CAS  Google Scholar 

  27. Liu YJ, Gao M, Lam JWY, Hu RR, Tang BZ. Copper-catalyzed poly coupling of diynes, primary amines, and aldehydes: a new one-pot multicomponent polymerization tool to functional polymers. Macromolecules, 2014, 47: 4908–4919

    Article  CAS  Google Scholar 

  28. Deng HQ, Hu RR, Zhao EG, Chan CYK, Lam JWY, Tang BZ. One-pot three-component tandem polymerization toward functional poly(arylene thiophenylene) with aggregation-enhanced emission characteristics. Macromolecules, 2014, 47: 4920–4929

    Article  CAS  Google Scholar 

  29. Espeel P, Carrette LLG, Bury K, Capenberghs S, Martins JC, Du Prez FE, Madder A. Multifunctionalized sequence-defined oligomers from a single building block. Angew Chem Int Ed, 2013, 52: 13261–13264

    Article  CAS  Google Scholar 

  30. Espeel P, Du Prez FE. One-pot multi-step reactions based on thiolactone chemistry: a powerful synthetic tool in polymer science. Eur Polym J, 2015, 62: 247–272

    Article  CAS  Google Scholar 

  31. Espeel P, Goethals F, Driessen F, Nguyen LTT, Du Prez FE. One-pot, additive-free preparation of functionalized polyurethanes via aminethiol-ene conjugation. Polym Chem, 2013, 4: 2449–2456

    Article  CAS  Google Scholar 

  32. Espeel P, Goethals F, Du Prez FE. One-pot multistep reactions based on thiolactones: extending the realm of thiol-ene chemistry in polymer synthesis. J Am Chem Soc, 2011, 133: 1678–1681

    Article  CAS  Google Scholar 

  33. Yu L, Wang LH, Hu ZT, You YZ, Wu DC, Hong CY. Sequential Michael addition thiol-ene and radical-mediated thiol-ene reactions in one-pot produced sequence-ordered polymers. Polym Chem, 2015, 6: 1527–1532

    Article  CAS  Google Scholar 

  34. Yan JJ, Sun JT, You YZ, Wu DC, Hong CY. Growing hyperbranched polymers using natural sunlight. Sci Rep, 2013, 3: 2841

    Google Scholar 

  35. Ma XP, Tang JB, Shen YQ, Fan MH, Tang HD, Radosz M. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers. J Am Chem Soc, 2009, 131: 14795–14803

    Article  CAS  Google Scholar 

  36. Shanmuganathan K, Sankhagowit RK, Iyer P, Ellison CJ. Thiol-ene chemistry: a greener approach to making chemically and thermally stable fibers. Chem Mater, 2011, 23: 4726–4732

    Article  CAS  Google Scholar 

  37. Zhang Z, You YZ, Wu DC, Hong CY. A novel multicomponent reaction and its application in sequence-ordered functional polymer synthesis. Polymer, 2015, 64: 221–226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, Z., Cheng, B. et al. Two tandem multicomponent reactions for the synthesis of sequence-defined polymers. Sci. China Chem. 58, 1734–1740 (2015). https://doi.org/10.1007/s11426-015-5448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5448-0

Keywords

Navigation