Skip to main content
Log in

Size-tunable synthesis of gold nanorods using pyrogallol as a reducing agent

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel and facile seed-mediated method for the preparation of monodispersed gold nanorods (GNRs) is presented by introducing pyrogallol as a reductant. Fast Fourier transformation of high-resolution transmission electron microscopy reveals that the synthesized GNRs are single crystalline. The longitudinal surface plasmon resonance of GNRs can be finely tuned by varying silver ion concentrations or seed amounts. Also, both thick (diameter >30 nm) and thin (diameter <10 nm) GNRs with exceptional monodispersity can be well prepared by this method. These findings indicate that this method has a greater performance in controlling the morphology of GNRs than that of traditional approach with ascorbic acid as a reductant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee A, Andrade GFS, Ahmed A, Souza ML, Coombs N, Tumarkin E, Liu K, Gordon R, Brolo AG, Kumacheva E. Probing dynamic generation of hot-spots in self-assembled chains of gold nanorods by surface-enhanced raman scattering. J Am Chem Soc, 2011, 133: 7563–7570

    Article  CAS  Google Scholar 

  2. Wang LB, Zhu YY, Xu LG, Chen W, Kuang H, Liu LQ, Agarwal A, Xu CL, Kotov NA. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew Chem Int Ed, 2010, 49: 5472–5475

    Article  CAS  Google Scholar 

  3. Huang XH, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc, 2006, 128: 2115–2120

    Article  CAS  Google Scholar 

  4. Huang YF, Sefah K, Bamrungsap S, Chang HT, Tan W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir, 2008, 24: 11860–11865

    Article  CAS  Google Scholar 

  5. Zhou WB, Shao JY, Qiao J, Wei QS, Tang JG, Jian J. Zwitterionic phosphorylcholine as a better ligand for gold nanorods cell uptake and selective photothermal ablation of cancer cells. Chem Commun, 2010, 46: 1479–1481

    Article  CAS  Google Scholar 

  6. Choi WI, Kim JY, Kang C, Byeon CC, Kim YH, Tee G. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano, 2011, 5: 1995–2003

    Article  CAS  Google Scholar 

  7. Pandey S, Thakur M, Mewada A, Anjarlekar D, Mishra N, Sharon M. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. J Mater Chem B, 2013, 1: 4972–4982

    Article  CAS  Google Scholar 

  8. Takahashi H, Niidome Y, Yamada S. Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem Commun, 2005, 17: 2247–2449

    Article  Google Scholar 

  9. Guo R, Zhang LY, Qian HQ, Li RT, Jiang XQ, Liu BR. Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir, 2010, 26: 5428–5434

    Article  CAS  Google Scholar 

  10. Kang HZ, Trondoli AC, Zhu GZ, Chen Y, Chang YJ, Liu HP, Huang YF, Zhang XL, Tan WH. Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano, 2011, 5: 5094–5099

    Article  CAS  Google Scholar 

  11. Zijlstra P, Chon JWM, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 2009, 459: 410–413

    Article  CAS  Google Scholar 

  12. Martin CR. Membrane-based synthesis of nanomaterials. Chem Mater, 1996, 8: 1739–1746

    Article  CAS  Google Scholar 

  13. Yu YY, Chang SS, Lee CL, Wang CRC. Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B, 1997, 101: 6661–6664

    Article  CAS  Google Scholar 

  14. Kim F, Song JH, Yang PD. Photochemical synthesis of gold nanorods. J Am Chem Soc, 2002, 124: 14316–14317

    Article  CAS  Google Scholar 

  15. Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B, 2001, 105: 4065–4067

    Article  CAS  Google Scholar 

  16. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater, 2003, 15: 1957–1962

    Article  CAS  Google Scholar 

  17. Sau TK, Murphy CJ. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004, 20: 6414–6420

    Article  CAS  Google Scholar 

  18. Jana NR. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small, 2005, 1: 875–882

    Article  CAS  Google Scholar 

  19. Wang CG, Wang TT, Ma ZF, Su ZM. pH-tuned synthesis of gold nanostructures from gold nanorods with different aspect ratios. Nanotechnology, 2005, 16: 2555–2560

    Article  CAS  Google Scholar 

  20. Park HJ, Ah CS, Kim WJ, Choi IS, Lee KP, Yun WS. Temperature-induced control of aspect ratio of gold nanorods. J Vac Sci Technol A, 2006, 24: 1323–1326

    Article  CAS  Google Scholar 

  21. Garg N, Scholl C, Mohanty A, Jin RC. The role of bromide ions in seeding growth of Au nanorods. Langmuir, 2010, 26: 10271–10276

    Article  CAS  Google Scholar 

  22. Smith DK, Korgel BA. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir, 2008, 24: 644–649

    Article  CAS  Google Scholar 

  23. Ahmed W, Kooij ES, van Silfhout A, Poelsema B. Quantitative analysis of gold nanorod alignment after electric field-assisted deposition. Nano Lett, 2009, 9: 3786–3794

    Article  CAS  Google Scholar 

  24. Ye XC, Jin LH, Caglayan H, Chen J, Xing GZ, Zheng C, Doan-Nguyen V, Kang YJ, Engheta N, Kagan CR, Murray CB. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano, 2012, 6: 2804–2817

    Article  CAS  Google Scholar 

  25. Ye XC, Gao YZ, Chen J, Reifsnyder DC, Zheng C, Murray CB. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett, 2013, 13: 2163–2171

    Article  CAS  Google Scholar 

  26. Ye XC, Zheng C, Chen J, Gao YZ, Murray CB. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett, 2013, 13: 765–771

    Article  CAS  Google Scholar 

  27. Khlebtsov BN, Ithanadeev VA, Ye J, Sukhorukov GB, Khlebtsov NG. Overgrowth of gold nanorods by using a binary surfactant mixture. Langmuir, 2014, 30: 1696–1703

    Article  CAS  Google Scholar 

  28. Xu XD, Cortie MB. Shape change and color gamut in gold nanorods, dumbbells, and dog bones. Adv Funct Mater, 2006, 16: 2170–2176

    Article  CAS  Google Scholar 

  29. Lohse SE, Murphy CJ. The quest for shape control: a history of gold nanorod synthesis. Chem Mater, 2013, 25: 1250–1261

    Article  CAS  Google Scholar 

  30. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B, 2006, 110: 7238–7248

    Article  CAS  Google Scholar 

  31. Prescott SW, Mulvaney P. Gold nanorod extinction spectra. J Appl Phys, 2006, 99: 123504–123507

    Article  Google Scholar 

  32. Lin Z, Cai JJ, Scriven LE, Davis HT. Spherical-to-wormlike micelle transition in ctab solutions. J Phys Chem, 1994, 98: 5984–5993

    Article  CAS  Google Scholar 

  33. Hassan PA, Yakhmi JV. Growth of cationic micelles in the presence of organic additives. Langmuir, 2000, 16: 7187–7191

    Article  CAS  Google Scholar 

  34. Scarabelli L, Grzelczak M, Liz-Marzan LM. Tuning gold nanorod synthesis through prereduction with salicylic acid. Chem Mater, 2013, 25: 4232–4238

    Article  CAS  Google Scholar 

  35. Johson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem, 2002, 12: 1765–1770

    Article  Google Scholar 

  36. Sun HM, Yuan QH, Zhang BH, Ai KL, Zhang PG, Lu LH. Gd-III functionalized gold nanorods for multimodal imaging applications. Nanoscale, 2011, 3: 1990–1996

    Article  CAS  Google Scholar 

  37. Wang SF, Zhang CF, Sun GA, Chen B, Xiang X, Ding QP, Zu XT. Chelating agents role on phase formation and surface morphology of single orthorhombic YMn2O5 nanorods via modified polyacrylamide gel route. Sci China Chem, 2014, 57: 402–408

    Article  CAS  Google Scholar 

  38. Wang C, Bao CC, Liang SJ, Fu HL, Wang K, Deng M, Liao QD, Cui DX. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer. Nanoscale Res Lett, 2014, 9: 264

    Article  Google Scholar 

  39. Zhen SJ, Guo FL, Li YF, Huang CZ. A facile one-pot method to fabricate gold nanoparticle chains with dextran. Sci China Chem, 2013, 56: 387–392

    Article  CAS  Google Scholar 

  40. Wang W, Liu C, Ling J, Huang CZ. Mercuric ions induced aggregation of gold nanoparticles as investigated by localized surface plasmon resonance light scattering and dynamic light scattering techniques. Sci China Chem, 2013, 56: 806–812

    Article  CAS  Google Scholar 

  41. Ye XS, Shi H, He XX, Wang KM, Li D, Qiu PC. Gold nanorod-seeded synthesis of Au@Ag/Au nanospheres with broad and intense near-infrared absorption for photothermal cancer therapy. J Mater Chem B, 2014, 2: 3667–3673

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nongyue He or Zhuoxuan Lu.

Additional information

Contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Xia, K., He, N. et al. Size-tunable synthesis of gold nanorods using pyrogallol as a reducing agent. Sci. China Chem. 58, 1759–1765 (2015). https://doi.org/10.1007/s11426-015-5437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5437-3

Keywords

Navigation