Skip to main content
Log in

Progress in side-chain thiophene-containing polymers: synthesis, properties and applications

  • Mini Reviews
  • SPECIAL TOPIC Progress in Synthetic Polymer Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In contrast to conventional main-chain conjugated polymers, incorporation of electronically active conjugated oligomers into non-conjugated polymer backbones as pendant groups represents a promising alternative strategy to developing novel electroactive polymer materials that are desirable for potential applications in organic electronics. This review focuses on polymers with thiophene in the side chain and summarizes the most important synthetic approaches to these polymers, including direct controlled polymerization techniques (e.g., ATRP, ROMP, and RAFT) as well as post-polymerization modifications. Additionally, various properties and applications of these polymers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Guo X, Baumgarten M, Müllen K. Designing p-conjugated polymers for organic electronics. Prog Polym Sci, 2013, 38:1832–1908

    Article  CAS  Google Scholar 

  2. Grimsdale AC, Leok Chan K, Martin RE, Jokisz PG, Holmes AB. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev, 2009, 109:897–1091

    Article  CAS  Google Scholar 

  3. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photonic, 2012, 6:153–161

    Article  CAS  Google Scholar 

  4. Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107:1324–1338

    Article  Google Scholar 

  5. Zhang ZG, Li Y. Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Sci China Chem, 2015, 58:192–209

    Article  CAS  Google Scholar 

  6. Wang C, Dong H, Hu W, Liu Y, Zhu D. Semiconducting p-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev, 2012, 112:2208–2267

    Article  CAS  Google Scholar 

  7. Liu Z, Zhang G, Cai Z, Chen X, Luo H, Li Y, Wang J, Zhang D. New organic semiconductors with imide/amide-containing molecular systems. Adv Mater, 2014, 26:6965–6977

    Article  CAS  Google Scholar 

  8. McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev, 2000, 100:2537–2574

    Article  CAS  Google Scholar 

  9. Nielsen CB, McCulloch I. Recent advances in transistor performance of polythiophenes. Prog Polym Sci, 2013, 38:2053–2069

    Article  CAS  Google Scholar 

  10. Mishra A, Ma CQ, Bäuerle P. Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem Rev, 2009, 109:1141–1276

    Article  CAS  Google Scholar 

  11. Handa NV, Serrano AV, Robb MJ, Hawker CJ. Exploring the synthesis and impact of end-functional poly(3-hexylthiophene). J Polym Sci Part A: Polym Chem, 2015, 53:831–841

    Article  CAS  Google Scholar 

  12. Casado J, Ponce Ortiz R, Lopez Navarrete JT. Quinoidal oligothiophenes: new properties behind an unconventional electronic structure. Chem Soc Rev, 2012, 41:5672–5686

    Article  CAS  Google Scholar 

  13. Zhang L, Colella NS, Cherniawski BP, Mannsfeld SCB, Briseno AL. Oligothiophene semiconductors: synthesis, characterization, and applications for organic devices. ACS Appl Mater Interface, 2014, 6:5327–5343

    Article  CAS  Google Scholar 

  14. Scheuble M, Goll M, Ludwigs S. Branched terthiophenes in organic electronics: from small molecules to polymers. Macromol Rapid Commun, 2015, 36:115–137

    Article  CAS  Google Scholar 

  15. Marrocchi A, Lanari D, Facchetti A, Vaccaro L. Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energy Environ Sci, 2012, 5:8457–8474

    Article  CAS  Google Scholar 

  16. Chang GP, Chuang CN, Lee JY, Chang YS, Leung MK, Hsieh KH. Synthesis and characterization of graft polystyrenes with para-substituted π-conjugated oligo(carbazole) and oligo(carbazolethiophene) moieties for organic field-effect transistors. Polymer, 2013, 54:3548–3555

    Article  CAS  Google Scholar 

  17. Sonar P, Benmansour H, Geiger T, Schlüter AD. Thiophene-based dendronized macromonomers and polymers. Polymer, 2007, 48:4996–5004

    Article  CAS  Google Scholar 

  18. Chou YH, Takasugi S, Goseki R, Ishizone T, Chen WC. Nonvolatile organic field-effect transistor memory devices using polymer electrets with different thiophene chain lengths. Polym Chem, 2014, 5:1063–1071

    Article  CAS  Google Scholar 

  19. Sugiyama K, Hirao A, Hsu JC, Tung YC, Chen WC. Living anionic polymerization of styrene derivatives para-substituted with p-conjugated oligo(fluorene) moieties. Macromolecules, 2009, 42:4053–4062

    Article  CAS  Google Scholar 

  20. Huang C, Potscavage WJ, Tiwari SP, Sutcu S, Barlow S, Kippelen B, Marder SR. Polynorbornenes with pendant perylene diimides for organic electronic applications. Polym Chem, 2012, 3:2996–3006

    Article  CAS  Google Scholar 

  21. Nantalaksakul A, Krishnamoorthy K, Thayumanavan S. Broadening Absorption in conductive polymers through cross-linkable side chains in a nonconjugated polymer backbone. Macromolecules, 2010, 43:37–43

    Article  CAS  Google Scholar 

  22. Fang YK, Liu CL, Li C, Lin CJ, Mezzenga R, Chen WC. Synthesis, morphology, and properties of poly(3-hexylthiophene)-block-poly(vinylphenyl oxadiazole) donor-acceptor rod-coil block copolymers and their memory device applications. Adv Funct Mater, 2010, 20:3012–3024

    Article  CAS  Google Scholar 

  23. Schäfer J, Breul A, Birckner E, Hager MD, Schubert US, Popp J, Dietzek B. Fluorescence study of energy transfer in PMMA polymers with pendant oligo-phenylene-ethynylenes. ChemPhysChem, 2013, 14:170–178

    Article  Google Scholar 

  24. Zhang Q, Cirpan A, Russell TP, Emrick T. Donor-acceptor poly-(thiophene-block-perylene diimide) copolymers: synthesis and solar cell fabrication. Macromolecules, 2009, 42:1079–1082

    Article  CAS  Google Scholar 

  25. Jenekhe SA, Alam MM, Zhu Y, Jiang S, Shevade AV. Single-molecule nanomaterials from p-stacked side-chain conjugated polymers. Adv Mater, 2007, 19:536–542

    Article  CAS  Google Scholar 

  26. Hayakawa T, Horiuchi S. From angstroms to micrometers: self-organized hierarchical structure within a polymer film. Angew Chem Int Ed, 2003, 42:2285–2289

    Article  CAS  Google Scholar 

  27. Rasmussen SC, Evenson SJ, McCausland CB. Fluorescent thiophene-based materials and their outlook for emissive applications. Chem Commun, 2015, 51:4528–4543

    Article  CAS  Google Scholar 

  28. Ong BS, Wu Y, Li Y, Liu P, Pan H. Thiophene polymer semiconductors for organic thin-film transistors. Chem Eur J, 2008, 14:4766–4778

    Article  CAS  Google Scholar 

  29. Palermo V, Schwartz E, Finlayson CE, Liscio A, Otten MBJ, Trapani S, Müllen K, Beljonne D, Friend RH, Nolte RJM, Rowan AE, Samorì P. Macromolecular scaffolding: the relationship between nanoscale architecture and function in multichromophoric arrays for organic electronics. Adv Mater, 2010, 22:E81–E88

    Article  CAS  Google Scholar 

  30. Lang AS, Muth MA, Heinrich CD, Carassco-Orozco M, Thelakkat M. Pendant perylene polymers with high electron mobility. J Polym Sci Part B: Polym Phys, 2013, 51:1480–1486

    Article  CAS  Google Scholar 

  31. Breul AM, Schäfer J, Pavlov GM, Teichler A, Höppener S, Weber C, Nowotny J, Blankenburg L, Popp J, Hager MD, Dietzek B, Schubert US. Synthesis and characterization of polymethacrylates containing conjugated oligo(phenylene ethynylene)s as side chains. J Polym Sci Part A: Polym Chem, 2012, 50:3192–3205

    Article  CAS  Google Scholar 

  32. Zhang ZG, Zhang S, Min J, Cui C, Geng H, Shuai Z, Li Y. Side chain engineering of polythiophene derivatives with a thienylene-vinylene conjugated side chain for application in polymer solar cells. Macromolecules, 2012, 45:2312–2320

    Article  CAS  Google Scholar 

  33. Kuo CY, Huang YC, Hsiow CY, Yang YW, Huang CI, Rwei SP, Wang HL, Wang L. Effect of side-chain architecture on the optical and crystalline properties of two-dimensional polythiophenes. Macromolecules, 2013, 46:5985–5997

    Article  CAS  Google Scholar 

  34. Wang X, Yan Y, Liu T, Su X, Qian L, Song Y, Xu H. Synthesis and nonlinear optical properties of polyacetylenes containing oxadiazole and thiophene pendant groups with high thermal stability. J Polym Sci Part A: Polym Chem, 2010, 48:5498–5504

    Article  CAS  Google Scholar 

  35. Wang JS, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc, 1995, 117:5614–5615

    Article  CAS  Google Scholar 

  36. Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization. Chem Rev, 2001, 101:3689–3745

    Article  CAS  Google Scholar 

  37. Matyjaszewski K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules, 2012, 45:4015–4039

    Article  CAS  Google Scholar 

  38. Matyjaszewski K, Tsarevsky NV. Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc, 2014, 136:6513–6533

    Article  CAS  Google Scholar 

  39. Dirlam PT, Kim HJ, Arrington KJ, Chung WJ, Sahoo R, Hill LJ, Costanzo PJ, Theato P, Char K, Pyun J. Single chain polymer nanoparticles via sequential ATRP and oxidative polymerization. Polym Chem, 2013, 4:3765–3773

    Article  CAS  Google Scholar 

  40. Yang Q, Xu Y, Jin H, Shen Z, Chen X, Zou D, Fan X, Zhou Q. A novel mesogen-jacketed liquid crystalline electroluminescent polymer with both thiophene and oxadiazole in conjugated side chain. J Polym Sci Part A: Polym Chem, 2010, 48:1502–1515

    Article  CAS  Google Scholar 

  41. Yang Q, Jin H, Xu Y, Shen Z, Fan X, Zou D, Zhou Q. Electroluminescent block copolymers containing oxadiazole and thiophene via ATRP. J Polym Sci Part A: Polym Chem, 2010, 48:5670–5678

    Article  CAS  Google Scholar 

  42. Kimura M, Kitao A, Fukawa T, Shirai H. Rodlike macromolecules through spatial overlapping of thiophene dendrons. Chem Eur J, 2011, 17:6821–6829

    Article  CAS  Google Scholar 

  43. Saha S, Baker GL. Surface-tethered conjugated polymers created via the grafting-from approach. J Appl Polym Sci, 2015, doi: 10. 1002/APP.41363

    Google Scholar 

  44. Schrock RR. Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes. Acc Chem Res, 1990, 23:158–165

    Article  CAS  Google Scholar 

  45. Bielawski CW, Grubbs RH. Living ring-opening metathesis polymerization. Prog Polym Sci, 2007, 32:1–29

    Article  CAS  Google Scholar 

  46. Frenzel U, Nuyken O. Ruthenium-based metathesis initiators: development and use in ring-opening metathesis polymerization. J Polym Sci Part A: Polym Chem, 2002, 40:2895–2916

    Article  CAS  Google Scholar 

  47. Leitgeb A, Wappel J, Slugovc C. The ROMP toolbox upgraded. Polymer, 2010, 51:2927–2946

    Article  CAS  Google Scholar 

  48. Watson KJ, Wolfe PS, Nguyen ST, Zhu J, Mirkin CA. Norbornenyl-substituted thiophenes and terthiophenes: novel doubly polymerizable monomers. Macromolecules, 2000, 33:4628–4633

    Article  CAS  Google Scholar 

  49. Jang SY, Sotzing GA, Marquez M. Intrinsically conducting polymer networks of poly(thiophene) via solid-state oxidative cross-linking of a poly(norbornylene) containing terthiophene moieties. Macromolecules, 2002, 35:7293–7300

    Article  CAS  Google Scholar 

  50. Jang SY, Sotzing GA, Marquez M. Poly(thiophene)s prepared via electrochemical solid-state oxidative cross-linking. A comparative study. Macromolecules, 2004, 37:4351–4359

    Article  CAS  Google Scholar 

  51. Kang HA, Bronstein HE, Swager TM. Conductive block copolymers integrated into polynorbornene-derived scaffolds. Macromolecules, 2008, 41:5540–5547

    Article  CAS  Google Scholar 

  52. Zhao C, Zhang Y, Wang C, Rothberg L, Ng MK. Synthesis of homopolymer containing diphenyl end-capped oligothiophene co-oligomer unit in the side chain. Org Lett, 2006, 8:1585–1588

    Article  CAS  Google Scholar 

  53. Zhao C, Zhang Y, Pan S, Rothberg L, Ng MK. Synthesis, characterization, and properties of homopolymers functionalized with oligothiophene derivatives in the side chain. Macromolecules, 2007, 40:1816–1823

    Article  CAS  Google Scholar 

  54. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998, 31:5559–5562

    Article  CAS  Google Scholar 

  55. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process. Aust J Chem, 2005, 58:379–410

    Article  CAS  Google Scholar 

  56. Mori H, Takano K, Endo T. RAFT polymerization of vinylthiophene derivatives and synthesis of block copolymers having cross-linkable segments. Macromolecules, 2009, 42:7342–7352

    Article  CAS  Google Scholar 

  57. Nakabayashi K, Oya H, Mori H. Cross-linked core-shell nanoparticles based on amphiphilic block copolymers by RAFT polymerization and palladium-catalyzed suzuki coupling reaction. Macromolecules, 2012, 45:3197–3204

    Article  CAS  Google Scholar 

  58. Häussler M, Lok YP, Chen M, Jasieniak J, Adhikari R, King SP, Haque SA, Forsyth CM, Winzenberg K, Watkins SE, Rizzardo E, Wilson GJ. Benzothiadiazole-containing pendant polymers prepared by RAFT and their electro-optical properties. Macromolecules, 2010, 43:7101–7110

    Article  Google Scholar 

  59. Qiao Y, Islam MS, Han K, Leonhardt E, Zhang J, Wang Q, Ploehn HJ, Tang C. Polymers containing highly polarizable conjugated side chains as high-performance all-organic nanodielectric materials. Adv Funct Mater, 2013, 23:5638–5646

    Article  CAS  Google Scholar 

  60. Islam MS, Qiao Y, Tang C, Ploehn HJ. Terthiophene-containing copolymers and homopolymer blends as high-performance dielectric materials. ACS Appl Mater Interface, 2015, 7:1967–1977

    Article  CAS  Google Scholar 

  61. Qiao Y, Islam MS, Yin X, Han K, Yan Y, Zhang J, Wang Q, Ploehn HJ, Tang C. Oligothiophene-containing polymer brushes by ROMP and RAFT: synthesis, characterization and dielectric properties. Polymer, 2015, doi: 10.1016/j.polymer.2015.02.011

    Google Scholar 

  62. Qiao Y, Islam MS, Wang L, Yan Y, Zhang J, Benicewicz BC, Ploehn HJ, Tang C. Thiophene polymer-grafted barium titanate nanoparticles toward nanodielectric composites. Chem Mater, 2014, 26:5319–5326

    Article  CAS  Google Scholar 

  63. Rancatore BJ, Mauldin CE, Tung SH, Wang C, Hexemer A, Strzalka J, Fréchet JMJ, Xu T. Nanostructured organic semiconductors via directed supramolecular assembly. ACS Nano, 2010, 4:2721–2729

    Article  CAS  Google Scholar 

  64. Youk JH, Locklin J, Xia C, Park MK, Advincula R. Preparation of gold nanoparticles from a polyelectrolyte complex solution of terthiophene amphiphiles. Langmuir, 2001, 17:4681–4683

    Article  CAS  Google Scholar 

  65. Hu Z, Reichmanis E. Synthesis of electroactive polystyrene derivatives para-substituted with p-conjugated oligothiophene via post-grafting functionalization. J Polym Sci Part A: Polym Chem, 2011, 49:1155–1162

    Article  CAS  Google Scholar 

  66. Parab K, Venkatasubbaiah K, Jäkle F. Luminescent triarylborane-functionalized polystyrene: synthesis, photophysical characterization, and anion-binding studies. J Am Chem Soc, 2006, 128:12879–12885

    Article  CAS  Google Scholar 

  67. Matsui A, Funahashi M, Tsuji T, Kato T. High hole mobility for a side-chain liquid-crystalline smectic polysiloxane exhibiting a nano-segregated structure with a terthiophene moiety. Chem Eur J, 2010, 16:13465–13472

    Article  CAS  Google Scholar 

  68. Iraqi A, Irvin AM, Walton JC, Crayston JA. Synthesis of methacrylate and silicone polymers with pendant thiophene groups. Synth Met, 1997, 84:377–378

    Article  CAS  Google Scholar 

  69. Fan Y, Lin B, Sun Y, Gong X, Yang H, Zhang X. A new method to make polymers with flexible main chains and photoelectric pendants for organic semiconductors. Polym Chem, 2013, 4:4245–4255

    Article  CAS  Google Scholar 

  70. Lee SH, Thévenaz DC, Weder C, Simon YC. Glassy poly(methacrylate) terpolymers with covalently attached emitters and sensitizers for low-power light upconversion. J Polym Sci Part A: Polym Chem, 2015, doi: 10.1002/pola.27626

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanbing Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Yin, X. & Tang, C. Progress in side-chain thiophene-containing polymers: synthesis, properties and applications. Sci. China Chem. 58, 1641–1650 (2015). https://doi.org/10.1007/s11426-015-5434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5434-6

Keywords

Navigation