Advertisement

Science China Chemistry

, Volume 58, Issue 11, pp 1641–1650 | Cite as

Progress in side-chain thiophene-containing polymers: synthesis, properties and applications

  • Yali Qiao
  • Xiaodong Yin
  • Chuanbing Tang
Mini Reviews SPECIAL TOPIC Progress in Synthetic Polymer Chemistry

Abstract

In contrast to conventional main-chain conjugated polymers, incorporation of electronically active conjugated oligomers into non-conjugated polymer backbones as pendant groups represents a promising alternative strategy to developing novel electroactive polymer materials that are desirable for potential applications in organic electronics. This review focuses on polymers with thiophene in the side chain and summarizes the most important synthetic approaches to these polymers, including direct controlled polymerization techniques (e.g., ATRP, ROMP, and RAFT) as well as post-polymerization modifications. Additionally, various properties and applications of these polymers are discussed.

Keywords

non-conjugated polymer thiophene controlled polymerization post-polymerization modification organic electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guo X, Baumgarten M, Müllen K. Designing p-conjugated polymers for organic electronics. Prog Polym Sci, 2013, 38:1832–1908CrossRefGoogle Scholar
  2. 2.
    Grimsdale AC, Leok Chan K, Martin RE, Jokisz PG, Holmes AB. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev, 2009, 109:897–1091CrossRefGoogle Scholar
  3. 3.
    Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photonic, 2012, 6:153–161CrossRefGoogle Scholar
  4. 4.
    Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107:1324–1338CrossRefGoogle Scholar
  5. 5.
    Zhang ZG, Li Y. Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Sci China Chem, 2015, 58:192–209CrossRefGoogle Scholar
  6. 6.
    Wang C, Dong H, Hu W, Liu Y, Zhu D. Semiconducting p-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev, 2012, 112:2208–2267CrossRefGoogle Scholar
  7. 7.
    Liu Z, Zhang G, Cai Z, Chen X, Luo H, Li Y, Wang J, Zhang D. New organic semiconductors with imide/amide-containing molecular systems. Adv Mater, 2014, 26:6965–6977CrossRefGoogle Scholar
  8. 8.
    McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev, 2000, 100:2537–2574CrossRefGoogle Scholar
  9. 9.
    Nielsen CB, McCulloch I. Recent advances in transistor performance of polythiophenes. Prog Polym Sci, 2013, 38:2053–2069CrossRefGoogle Scholar
  10. 10.
    Mishra A, Ma CQ, Bäuerle P. Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem Rev, 2009, 109:1141–1276CrossRefGoogle Scholar
  11. 11.
    Handa NV, Serrano AV, Robb MJ, Hawker CJ. Exploring the synthesis and impact of end-functional poly(3-hexylthiophene). J Polym Sci Part A: Polym Chem, 2015, 53:831–841CrossRefGoogle Scholar
  12. 12.
    Casado J, Ponce Ortiz R, Lopez Navarrete JT. Quinoidal oligothiophenes: new properties behind an unconventional electronic structure. Chem Soc Rev, 2012, 41:5672–5686CrossRefGoogle Scholar
  13. 13.
    Zhang L, Colella NS, Cherniawski BP, Mannsfeld SCB, Briseno AL. Oligothiophene semiconductors: synthesis, characterization, and applications for organic devices. ACS Appl Mater Interface, 2014, 6:5327–5343CrossRefGoogle Scholar
  14. 14.
    Scheuble M, Goll M, Ludwigs S. Branched terthiophenes in organic electronics: from small molecules to polymers. Macromol Rapid Commun, 2015, 36:115–137CrossRefGoogle Scholar
  15. 15.
    Marrocchi A, Lanari D, Facchetti A, Vaccaro L. Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energy Environ Sci, 2012, 5:8457–8474CrossRefGoogle Scholar
  16. 16.
    Chang GP, Chuang CN, Lee JY, Chang YS, Leung MK, Hsieh KH. Synthesis and characterization of graft polystyrenes with para-substituted π-conjugated oligo(carbazole) and oligo(carbazolethiophene) moieties for organic field-effect transistors. Polymer, 2013, 54:3548–3555CrossRefGoogle Scholar
  17. 17.
    Sonar P, Benmansour H, Geiger T, Schlüter AD. Thiophene-based dendronized macromonomers and polymers. Polymer, 2007, 48:4996–5004CrossRefGoogle Scholar
  18. 18.
    Chou YH, Takasugi S, Goseki R, Ishizone T, Chen WC. Nonvolatile organic field-effect transistor memory devices using polymer electrets with different thiophene chain lengths. Polym Chem, 2014, 5:1063–1071CrossRefGoogle Scholar
  19. 19.
    Sugiyama K, Hirao A, Hsu JC, Tung YC, Chen WC. Living anionic polymerization of styrene derivatives para-substituted with p-conjugated oligo(fluorene) moieties. Macromolecules, 2009, 42:4053–4062CrossRefGoogle Scholar
  20. 20.
    Huang C, Potscavage WJ, Tiwari SP, Sutcu S, Barlow S, Kippelen B, Marder SR. Polynorbornenes with pendant perylene diimides for organic electronic applications. Polym Chem, 2012, 3:2996–3006CrossRefGoogle Scholar
  21. 21.
    Nantalaksakul A, Krishnamoorthy K, Thayumanavan S. Broadening Absorption in conductive polymers through cross-linkable side chains in a nonconjugated polymer backbone. Macromolecules, 2010, 43:37–43CrossRefGoogle Scholar
  22. 22.
    Fang YK, Liu CL, Li C, Lin CJ, Mezzenga R, Chen WC. Synthesis, morphology, and properties of poly(3-hexylthiophene)-block-poly(vinylphenyl oxadiazole) donor-acceptor rod-coil block copolymers and their memory device applications. Adv Funct Mater, 2010, 20:3012–3024CrossRefGoogle Scholar
  23. 23.
    Schäfer J, Breul A, Birckner E, Hager MD, Schubert US, Popp J, Dietzek B. Fluorescence study of energy transfer in PMMA polymers with pendant oligo-phenylene-ethynylenes. ChemPhysChem, 2013, 14:170–178CrossRefGoogle Scholar
  24. 24.
    Zhang Q, Cirpan A, Russell TP, Emrick T. Donor-acceptor poly-(thiophene-block-perylene diimide) copolymers: synthesis and solar cell fabrication. Macromolecules, 2009, 42:1079–1082CrossRefGoogle Scholar
  25. 25.
    Jenekhe SA, Alam MM, Zhu Y, Jiang S, Shevade AV. Single-molecule nanomaterials from p-stacked side-chain conjugated polymers. Adv Mater, 2007, 19:536–542CrossRefGoogle Scholar
  26. 26.
    Hayakawa T, Horiuchi S. From angstroms to micrometers: self-organized hierarchical structure within a polymer film. Angew Chem Int Ed, 2003, 42:2285–2289CrossRefGoogle Scholar
  27. 27.
    Rasmussen SC, Evenson SJ, McCausland CB. Fluorescent thiophene-based materials and their outlook for emissive applications. Chem Commun, 2015, 51:4528–4543CrossRefGoogle Scholar
  28. 28.
    Ong BS, Wu Y, Li Y, Liu P, Pan H. Thiophene polymer semiconductors for organic thin-film transistors. Chem Eur J, 2008, 14:4766–4778CrossRefGoogle Scholar
  29. 29.
    Palermo V, Schwartz E, Finlayson CE, Liscio A, Otten MBJ, Trapani S, Müllen K, Beljonne D, Friend RH, Nolte RJM, Rowan AE, Samorì P. Macromolecular scaffolding: the relationship between nanoscale architecture and function in multichromophoric arrays for organic electronics. Adv Mater, 2010, 22:E81–E88CrossRefGoogle Scholar
  30. 30.
    Lang AS, Muth MA, Heinrich CD, Carassco-Orozco M, Thelakkat M. Pendant perylene polymers with high electron mobility. J Polym Sci Part B: Polym Phys, 2013, 51:1480–1486CrossRefGoogle Scholar
  31. 31.
    Breul AM, Schäfer J, Pavlov GM, Teichler A, Höppener S, Weber C, Nowotny J, Blankenburg L, Popp J, Hager MD, Dietzek B, Schubert US. Synthesis and characterization of polymethacrylates containing conjugated oligo(phenylene ethynylene)s as side chains. J Polym Sci Part A: Polym Chem, 2012, 50:3192–3205CrossRefGoogle Scholar
  32. 32.
    Zhang ZG, Zhang S, Min J, Cui C, Geng H, Shuai Z, Li Y. Side chain engineering of polythiophene derivatives with a thienylene-vinylene conjugated side chain for application in polymer solar cells. Macromolecules, 2012, 45:2312–2320CrossRefGoogle Scholar
  33. 33.
    Kuo CY, Huang YC, Hsiow CY, Yang YW, Huang CI, Rwei SP, Wang HL, Wang L. Effect of side-chain architecture on the optical and crystalline properties of two-dimensional polythiophenes. Macromolecules, 2013, 46:5985–5997CrossRefGoogle Scholar
  34. 34.
    Wang X, Yan Y, Liu T, Su X, Qian L, Song Y, Xu H. Synthesis and nonlinear optical properties of polyacetylenes containing oxadiazole and thiophene pendant groups with high thermal stability. J Polym Sci Part A: Polym Chem, 2010, 48:5498–5504CrossRefGoogle Scholar
  35. 35.
    Wang JS, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc, 1995, 117:5614–5615CrossRefGoogle Scholar
  36. 36.
    Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization. Chem Rev, 2001, 101:3689–3745CrossRefGoogle Scholar
  37. 37.
    Matyjaszewski K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules, 2012, 45:4015–4039CrossRefGoogle Scholar
  38. 38.
    Matyjaszewski K, Tsarevsky NV. Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc, 2014, 136:6513–6533CrossRefGoogle Scholar
  39. 39.
    Dirlam PT, Kim HJ, Arrington KJ, Chung WJ, Sahoo R, Hill LJ, Costanzo PJ, Theato P, Char K, Pyun J. Single chain polymer nanoparticles via sequential ATRP and oxidative polymerization. Polym Chem, 2013, 4:3765–3773CrossRefGoogle Scholar
  40. 40.
    Yang Q, Xu Y, Jin H, Shen Z, Chen X, Zou D, Fan X, Zhou Q. A novel mesogen-jacketed liquid crystalline electroluminescent polymer with both thiophene and oxadiazole in conjugated side chain. J Polym Sci Part A: Polym Chem, 2010, 48:1502–1515CrossRefGoogle Scholar
  41. 41.
    Yang Q, Jin H, Xu Y, Shen Z, Fan X, Zou D, Zhou Q. Electroluminescent block copolymers containing oxadiazole and thiophene via ATRP. J Polym Sci Part A: Polym Chem, 2010, 48:5670–5678CrossRefGoogle Scholar
  42. 42.
    Kimura M, Kitao A, Fukawa T, Shirai H. Rodlike macromolecules through spatial overlapping of thiophene dendrons. Chem Eur J, 2011, 17:6821–6829CrossRefGoogle Scholar
  43. 43.
    Saha S, Baker GL. Surface-tethered conjugated polymers created via the grafting-from approach. J Appl Polym Sci, 2015, doi: 10. 1002/APP.41363Google Scholar
  44. 44.
    Schrock RR. Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes. Acc Chem Res, 1990, 23:158–165CrossRefGoogle Scholar
  45. 45.
    Bielawski CW, Grubbs RH. Living ring-opening metathesis polymerization. Prog Polym Sci, 2007, 32:1–29CrossRefGoogle Scholar
  46. 46.
    Frenzel U, Nuyken O. Ruthenium-based metathesis initiators: development and use in ring-opening metathesis polymerization. J Polym Sci Part A: Polym Chem, 2002, 40:2895–2916CrossRefGoogle Scholar
  47. 47.
    Leitgeb A, Wappel J, Slugovc C. The ROMP toolbox upgraded. Polymer, 2010, 51:2927–2946CrossRefGoogle Scholar
  48. 48.
    Watson KJ, Wolfe PS, Nguyen ST, Zhu J, Mirkin CA. Norbornenyl-substituted thiophenes and terthiophenes: novel doubly polymerizable monomers. Macromolecules, 2000, 33:4628–4633CrossRefGoogle Scholar
  49. 49.
    Jang SY, Sotzing GA, Marquez M. Intrinsically conducting polymer networks of poly(thiophene) via solid-state oxidative cross-linking of a poly(norbornylene) containing terthiophene moieties. Macromolecules, 2002, 35:7293–7300CrossRefGoogle Scholar
  50. 50.
    Jang SY, Sotzing GA, Marquez M. Poly(thiophene)s prepared via electrochemical solid-state oxidative cross-linking. A comparative study. Macromolecules, 2004, 37:4351–4359CrossRefGoogle Scholar
  51. 51.
    Kang HA, Bronstein HE, Swager TM. Conductive block copolymers integrated into polynorbornene-derived scaffolds. Macromolecules, 2008, 41:5540–5547CrossRefGoogle Scholar
  52. 52.
    Zhao C, Zhang Y, Wang C, Rothberg L, Ng MK. Synthesis of homopolymer containing diphenyl end-capped oligothiophene co-oligomer unit in the side chain. Org Lett, 2006, 8:1585–1588CrossRefGoogle Scholar
  53. 53.
    Zhao C, Zhang Y, Pan S, Rothberg L, Ng MK. Synthesis, characterization, and properties of homopolymers functionalized with oligothiophene derivatives in the side chain. Macromolecules, 2007, 40:1816–1823CrossRefGoogle Scholar
  54. 54.
    Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998, 31:5559–5562CrossRefGoogle Scholar
  55. 55.
    Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process. Aust J Chem, 2005, 58:379–410CrossRefGoogle Scholar
  56. 56.
    Mori H, Takano K, Endo T. RAFT polymerization of vinylthiophene derivatives and synthesis of block copolymers having cross-linkable segments. Macromolecules, 2009, 42:7342–7352CrossRefGoogle Scholar
  57. 57.
    Nakabayashi K, Oya H, Mori H. Cross-linked core-shell nanoparticles based on amphiphilic block copolymers by RAFT polymerization and palladium-catalyzed suzuki coupling reaction. Macromolecules, 2012, 45:3197–3204CrossRefGoogle Scholar
  58. 58.
    Häussler M, Lok YP, Chen M, Jasieniak J, Adhikari R, King SP, Haque SA, Forsyth CM, Winzenberg K, Watkins SE, Rizzardo E, Wilson GJ. Benzothiadiazole-containing pendant polymers prepared by RAFT and their electro-optical properties. Macromolecules, 2010, 43:7101–7110CrossRefGoogle Scholar
  59. 59.
    Qiao Y, Islam MS, Han K, Leonhardt E, Zhang J, Wang Q, Ploehn HJ, Tang C. Polymers containing highly polarizable conjugated side chains as high-performance all-organic nanodielectric materials. Adv Funct Mater, 2013, 23:5638–5646CrossRefGoogle Scholar
  60. 60.
    Islam MS, Qiao Y, Tang C, Ploehn HJ. Terthiophene-containing copolymers and homopolymer blends as high-performance dielectric materials. ACS Appl Mater Interface, 2015, 7:1967–1977CrossRefGoogle Scholar
  61. 61.
    Qiao Y, Islam MS, Yin X, Han K, Yan Y, Zhang J, Wang Q, Ploehn HJ, Tang C. Oligothiophene-containing polymer brushes by ROMP and RAFT: synthesis, characterization and dielectric properties. Polymer, 2015, doi: 10.1016/j.polymer.2015.02.011Google Scholar
  62. 62.
    Qiao Y, Islam MS, Wang L, Yan Y, Zhang J, Benicewicz BC, Ploehn HJ, Tang C. Thiophene polymer-grafted barium titanate nanoparticles toward nanodielectric composites. Chem Mater, 2014, 26:5319–5326CrossRefGoogle Scholar
  63. 63.
    Rancatore BJ, Mauldin CE, Tung SH, Wang C, Hexemer A, Strzalka J, Fréchet JMJ, Xu T. Nanostructured organic semiconductors via directed supramolecular assembly. ACS Nano, 2010, 4:2721–2729CrossRefGoogle Scholar
  64. 64.
    Youk JH, Locklin J, Xia C, Park MK, Advincula R. Preparation of gold nanoparticles from a polyelectrolyte complex solution of terthiophene amphiphiles. Langmuir, 2001, 17:4681–4683CrossRefGoogle Scholar
  65. 65.
    Hu Z, Reichmanis E. Synthesis of electroactive polystyrene derivatives para-substituted with p-conjugated oligothiophene via post-grafting functionalization. J Polym Sci Part A: Polym Chem, 2011, 49:1155–1162CrossRefGoogle Scholar
  66. 66.
    Parab K, Venkatasubbaiah K, Jäkle F. Luminescent triarylborane-functionalized polystyrene: synthesis, photophysical characterization, and anion-binding studies. J Am Chem Soc, 2006, 128:12879–12885CrossRefGoogle Scholar
  67. 67.
    Matsui A, Funahashi M, Tsuji T, Kato T. High hole mobility for a side-chain liquid-crystalline smectic polysiloxane exhibiting a nano-segregated structure with a terthiophene moiety. Chem Eur J, 2010, 16:13465–13472CrossRefGoogle Scholar
  68. 68.
    Iraqi A, Irvin AM, Walton JC, Crayston JA. Synthesis of methacrylate and silicone polymers with pendant thiophene groups. Synth Met, 1997, 84:377–378CrossRefGoogle Scholar
  69. 69.
    Fan Y, Lin B, Sun Y, Gong X, Yang H, Zhang X. A new method to make polymers with flexible main chains and photoelectric pendants for organic semiconductors. Polym Chem, 2013, 4:4245–4255CrossRefGoogle Scholar
  70. 70.
    Lee SH, Thévenaz DC, Weder C, Simon YC. Glassy poly(methacrylate) terpolymers with covalently attached emitters and sensitizers for low-power light upconversion. J Polym Sci Part A: Polym Chem, 2015, doi: 10.1002/pola.27626Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations