Skip to main content

Synthesis and characterization of a tetradentate PNCP iridium complex for catalytic alkane dehydrogenation

Abstract

A novel hydrido iridium chloride complex supported by a tetradentate PNCP ligand has been synthesized and characterized. Upon activation with NaOtBu, the PNCP-IrHCl complex is active for transfer dehydrogenation of cyclic and linear alkanes.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Choi J, MacArthur AHR, Brookhart M, Goldman AS. Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem Rev, 2011, 111: 1761–1779

    CAS  Article  Google Scholar 

  2. 2

    Weissermel K, Arpel HJ. Industrial Organic Chemistry. Weinheim: Wiley-VCH, 2003. 59–89

    Book  Google Scholar 

  3. 3

    Crabtree RH, Mihelcic JM, Quirk JM. Iridium complexes in alkane dehydrogenation. J Am Chem Soc, 1979, 101: 7738–7740

    CAS  Article  Google Scholar 

  4. 4

    Baudry D, Ephritikhine M, Felkin H. The activation of C–H bonds in cyclopentane by bis( phosphine)rhenium heptahydrides. J Chem Soc, Chem Commun, 1980: 1243–1244

    Google Scholar 

  5. 5

    Baudry D, Ephritikhine M, Felkin H. The activation of C–H bonds in cycloalkanes by rhenium complexes. J Chem Soc, Chem Commun, 1982: 606–607

    Google Scholar 

  6. 6

    Baudry D, Ephritikhine M, Felkin H, Holmes-Smith R. The selective catalytic conversion of cycloalkanes into cycloalkenes using a soluble rhenium polyhydride system. J Chem Soc, Chem Commun, 1983: 788–789

    Google Scholar 

  7. 7

    Burk MJ, Crabtree RH, Parnell CP, Uriarte RJ. Selective stoichiometric and catalytic carbon-hydrogen bond cleavage reactions in hydrocarbons by iridium complexes. Organometallics, 1984, 3: 816–817

    CAS  Article  Google Scholar 

  8. 8

    Brown SH, Crabtree RH. Alkane functionalisation on a preparative scale by mercury photosensitisation. J Chem Soc, Chem Commun, 1987: 970–971

    Google Scholar 

  9. 9

    Nomura K, Saito Y. n-Alkene and dihydrogen formation from n- alkanes by photocatalysis using carboyl(chloro)phosphine-rhodium complexes. J Chem Soc, Chem Commun, 1988: 161–162

    Google Scholar 

  10. 10

    Sakakura T, Sodeyama T, Tokunaga T, Tanaka M. Highly catalytic dehydrogenation of alkanes to olefins via C–H activation in the presence of RhCl(CO)(PMe3)2 under irradiation. Chem Lett, 1988: 263

    Google Scholar 

  11. 11

    Maguire JA, Boese WT, Goldman AS. Photochemical dehydrogenation of alkanes catalyzed by trans-carbonylchlorobis(trimethylphosphine) rhodium: aspects of selectivity and mechanism. J Am Chem Soc, 1989, 111: 7088–7093

    CAS  Article  Google Scholar 

  12. 12

    Maguire JA, Goldman AS. Efficient low-temperature thermal functionalization of alkanes. Transfer dehydrogenation catalyzed by Rh(PMe3)2Cl(CO) in solution under a high-pressure hydrogen atmosphere. J Am Chem Soc, 1991, 113: 6706–6708

    CAS  Article  Google Scholar 

  13. 13

    Maguire JA, Petrillo A, Goldman AS. Efficient transfer-dehydrogenation of alkanes catalyzed by rhodium trimethylphosphine complexes under dihydrogen atmosphere. J Am Chem Soc, 1992, 114: 9492–9498

    CAS  Article  Google Scholar 

  14. 14

    Chowdhury AD, Weding N, Julis J, Franke R, Jackstell R, Beller M. Towards a practical development of light-driven acceptorless alkane dehydrogenation. Angew Chem Int Ed, 2014, 53: 6477–6481

    Article  Google Scholar 

  15. 15

    Gupta M, Hagen C, Flesher RJ, Kaska WC, Jensen CM. A highly active alkane dehydrogenation catalyst: stabilization of dihydrido rhodium and iridium complexes by a P-C-P pincer ligand. Chem Commun, 1996: 2083–2084

    Google Scholar 

  16. 16

    Xu WW, Rosini PG, Krogh-Jespersen K, Goldman AS, Gupta M, Jensen MC, Kaska CW. Thermochemical alkane dehydrogenation catalyzed in solution without the use of a hydrogen acceptor. Chem Commun, 1997: 2273–2274

    Google Scholar 

  17. 17

    Jensen CM. Iridium PCP pincer complexes: highly active and robust catalysts for novel homogeneous aliphatic dehydrogenations. Chem Commun, 1999: 2443–2449

    Google Scholar 

  18. 18

    Liu F, Pak EB, Singh B, Jensen CM, Goldman AS. Dehydrogenation of n-alkanes catalyzed by iridium “pincer” complexes: regioselective formation of α-olefins. J Am Chem Soc, 1999, 121: 4086–4087

    CAS  Article  Google Scholar 

  19. 19

    Haenel MW, Oevers S, Angermund K, Kaska WC, Fan HJ, Hall MB. Thermally stable homogeneous catalysts for alkane dehydrogenation. Angew Chem Int Ed, 2001, 40: 3596–3600

    CAS  Article  Google Scholar 

  20. 20

    Krogh-Jespersen K, Czerw M, Zhu K, Singh B, Kanzelberger M, Darji N, Achord PD, Renkema KB, Goldman AS. Combined computational and experimental study of substituent effects on the thermodynamics of H2, CO, arene, and alkane addition to iridium. J Am Chem Soc, 2002, 124: 10797–10809

    CAS  Article  Google Scholar 

  21. 21

    Zhu K, Achord PD, Zhang X, Krogh-Jespersen K, Goldman AS. Highly effective pincer-ligated iridium catalysts for alkane dehydrogenation: DFT calculations of relevant thermodynamic, kinetic, and spectroscopic properties. J Am Chem Soc, 2004, 126: 13044–13053

    CAS  Article  Google Scholar 

  22. 22

    Ray A, Zhu K, Kissin YV, Cherian AE, Coates GW, Goldman AS. Dehydrogenation of aliphatic polyolefins catalyzed by pincer-ligated iridium complexes. Chem Commun, 2005: 3388–3390

    Google Scholar 

  23. 23

    Kuklin SA, Sheloumov AM, Dolgushin FM, Ezernitskaya MG, Peregudov AS, Petrovskii PV, Koridze AA. Highly active iridium catalysts for alkane dehydrogenation. Synthesis and properties of iridium bis(phosphine) pincer complexes based on ferrocene and ruthenocene. Organometallics, 2006, 25: 5466–5476

    CAS  Article  Google Scholar 

  24. 24

    Kundu S, Choliy Y, Zhuo G, Ahuja R, Emge TJ, Warmuth R, Brookhart M, Krogh-Jespersen K, Goldman AS. Rational design and synthesis of highly active pincer-iridium catalysts for alkane dehydrogenation. Organometallics, 2009, 28: 5432–5444

    CAS  Article  Google Scholar 

  25. 25

    Punji B, Emge TJ, Goldman AS. A highly stable adamantylsubstituted pincer-ligated iridium catalyst for alkane dehydrogenation. Organometallics, 2010, 29: 2702–2709

    CAS  Article  Google Scholar 

  26. 26

    Adams JJ, Arulsamy N, Roddick DM. Investigation of iridium \(^{CF_3 } PCP\) pincer catalytic dehydrogenation and decarbonylation chemistry. Organometallics, 2012, 31: 1439–1447

    Article  Google Scholar 

  27. 27

    Göttker-Schnetmann I, White P, Brookhart M. Iridium bis(phosphinite) p-XPCP pincer complexes: highly active catalysts for the transfer dehydrogenation of alkanes. J Am Chem Soc, 2004, 126: 1804–1811

    Article  Google Scholar 

  28. 28

    Göttker-Schnetmann I, Brookhart M. Mechanistic studies of the transfer dehydrogenation of cyclooctane catalyzed by iridium bis(phosphinite) p-XPCP pincer complexes. J Am Chem Soc, 2004, 126: 9330–9338

  29. 29

    Göttker-Schnetmann I, White PS, Brookhart M. Synthesis and properties of iridium bis(phosphinite) pincer complexes (p-XPCP)IrH2, (p-XPCP)Ir(CO), (p-XPCP)Ir(H)(aryl), and {(p-XPCP)Ir}2{µ-N2} and their relevance in alkane transfer dehydrogenation. Organometallics, 2004, 23: 1766–1776

    Article  Google Scholar 

  30. 30

    Yao WB, Zhang YX, Jia XQ, Huang Z. Selective catalytic transfer dehydrogenation of alkanes and heterocycles by an iridium pincer complex. Angew Chem Int Ed, 2014, 53: 1390–1394

    CAS  Article  Google Scholar 

  31. 31

    Gruver BC, Adams JJ, Warner SJ, Arulsamy N, Roddick DM. Acceptor pincer chemistry of ruthenium: catalytic alkane dehydrogenation by \(^{CF_3 } PCP\)Ru(cod)(H). Organometallics, 2011, 30: 5133–5140

    CAS  Article  Google Scholar 

  32. 32

    Chianese AR, Shaner SE, Tendler JA, Pudalov DM, Shopov DY, Kim D, Rogers SL, Mo A. Iridium complexes of bulky CCC-pincer N-heterocyclic carbene ligands: steric control of coordination number and catalytic alkene isomerization. Organometallics, 2012, 31: 7359–7367

    CAS  Article  Google Scholar 

  33. 33

    Zuo W, Braunstein P. N-heterocyclic dicarbene iridium(III) pincer complexes featuring mixed NHC/abnormal NHC ligands and their applications in the transfer dehydrogenation of cyclooctane. Organometallics, 2011, 31: 2606–2615

    Article  Google Scholar 

  34. 34

    Liu X, Braunstein P. Complexes with hybrid phosphorus-NHC ligands: pincer-type Ir hydrides, dinuclear Ag and Ir and tetranuclear Cu and Ag complexes. Inorg Chem, 2013, 52: 7367–7379

    CAS  Article  Google Scholar 

  35. 35

    Guo L, Ma XC, Fang, HQ, Jia XQ, Huang Z. A general and mild catalytic α-alkylation of unactivated esters using alcohols. Angew Chem Int Ed, 2015, 2015, 54: 4023–4027

    CAS  Article  Google Scholar 

  36. 36

    Jia XQ, Zhang L, Qin C, Leng XB, Huang Z. Iridium complexes of new NCP pincer ligands: catalytic alkane dehydrogenation and alkene isomerization. Chem Commun, 2014, 50: 11056–11059

    CAS  Article  Google Scholar 

  37. 37

    Braunstein P, Chauvin Y, Nähring J, DeCian A, Fischer J, Tiripicchio A, Ugozzoli F. Rhodium(I) and iridium(I) complexes with β-Keto phosphine or phosphino enolate ligands. Catalytic transfer dehydrogenation of cyclooctane. Organometallics, 1996, 15: 5551–5567

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zheng Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Huang, Z. Synthesis and characterization of a tetradentate PNCP iridium complex for catalytic alkane dehydrogenation. Sci. China Chem. 58, 1340–1344 (2015). https://doi.org/10.1007/s11426-015-5421-y

Download citation

Keywords

  • alkane
  • dehydrogenation
  • iridium
  • tetradentate ligand