Skip to main content
Log in

Proteomic profiling of protein corona formed on the surface of nanomaterial

  • Reviews
  • Special Topic Analytical Sciences at the Nano-Bio Interface
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The formation of protein coronas on nanomaterial will significantly alter the surface properties of nanomaterial in biological systems and subsequently impact biological responses including signaling, cellular uptake, transport, and toxicity etc. It is of critical importance to understand the formation of protein coronas on the surface of nanomaterial. Analytical techniques, especially mass spectrometry-based proteomics methods, are playing a key role for the qualitative and quantitative analyses of protein coronas on nanomaterial. In this review, the proteomic approaches developed for the characterization of protein coronas on various nanomaterials are introduced with the emphasis on the mass spectrometry-based proteomic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y, Wang F, Sun TM, Du JZ, Yang XZ, Wang J. Surfacemodulated and thermoresponsive polyphosphoester nanoparticles for enhanced intracellular drug delivery. Sci China Chem, 2014, 57: 579–585

    Article  CAS  Google Scholar 

  2. Cao M, Liu X, Tang T, Sui M, Shen Y. Facile synthesis of sizetunable stable nanoparticles via click reaction for cancer drug delivery. Sci China Chem, 2014, 57: 633–644

    Article  CAS  Google Scholar 

  3. Zhang Y, Xiao CS, Li MQ, Ding JX, Yang CG, Zhuang XL, Chen XS. Co-delivery of doxorubicin and paclitaxel with linear-dendritic block copolymer for enhanced anti-cancer efficacy. Sci China Chem, 2014, 57: 624–632

    Article  CAS  Google Scholar 

  4. Ma HL, Liang XJ. Fullerenes as unique nanopharmaceuticals for disease treatment. Sci China Chem, 2010, 53: 2233–2240

    Article  CAS  Google Scholar 

  5. Kenouche S, Larionova J, Bezzi N, Guari Y, Bertin N, Zanca M, Lartigue L, Cieslak M, Godin C, Morrot G, Goze-Bac C. NMR investigation of functionalized magnetic nanoparticles Fe3O4 as T-1-T- 2 contrast agents. Powder Technol, 2014, 255: 60–65

    Article  CAS  Google Scholar 

  6. Naccache R, Chevallier P, Lagueux J, Gossuin Y, Laurent S, Vander Elst L, Chilian C, Capobianco JA, Fortin MA. High relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging. Adv Healthc Mater, 2013, 2: 1478–1488

    Article  CAS  Google Scholar 

  7. Atkins TM, Cassidy MC, Lee M, Ganguly S, Marcus CM, Kauzlarich SM. Synthesis of long T-1 silicon nanoparticles for hyperpolarized Si-29 magnetic resonance imaging. ACS Nano, 2013, 7: 1609–1617

    Article  CAS  Google Scholar 

  8. Liu CY, Gao ZY, Zeng JF, Hou Y, Fang F, Li YL, Qiao RR, Shen L, Lei H, Yang WS, Gao MY. Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano, 2013, 7: 7227–7240

    Article  CAS  Google Scholar 

  9. Wu S, Zhang LL, Qi L, Tao SY, Lan XQ, Liu ZG, Meng CG. Ultrasensitive biosensor based on mesocellular silica foam for organophosphorous pesticide detection. Biosens Bioelectron, 2011, 26: 2864–2869

    Article  CAS  Google Scholar 

  10. Yen SK, Janczewski D, Lakshmi JL, Bin Dolmanan S, Tripathy S, Ho VHB, Vijayaragavan V, Hariharan A, Padmanabhan P, Bhakoo KK, Sudhaharan T, Ahmed S, Zhang Y, Selvan ST. Design and synthesis of polymer-functionalized nir fluorescent dyes-magnetic nanoparticles for bioimaging. ACS Nano, 2013, 7: 6796–6805

    Article  CAS  Google Scholar 

  11. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater, 2009, 8: 543–557

    Article  CAS  Google Scholar 

  12. Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev, 2012, 41: 2780–2799

    Article  CAS  Google Scholar 

  13. Pozzi D, Caracciolo G, Capriotti AL, Cavaliere C, Piovesana S, Colapicchioni V, Palchetti S, Riccioli A, Laganà A. A proteomicsbased methodology to investigate the protein corona effect for targeted drug delivery. Mol BioSyst, 2014, 10: 2815–2819

    Article  CAS  Google Scholar 

  14. Gessner A, Lieske A, Paulke BR, Muller RH. Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res A, 2003, 65: 319–326

    Article  Google Scholar 

  15. Lee WA, Pernodet N, Li B, Lin CH, Hatchwell E, Rafailovich MH. Multicomponent polymer coating to block photocatalytic activity of TiO2 nanoparticles. Chem Commun (Camb), 2007: 4815–4817

    Google Scholar 

  16. Monopoli MP, Bombelli FB, Dawson KA. Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol, 2011, 6: 11–12

    Article  CAS  Google Scholar 

  17. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev, 2011, 111: 5610–5637

    Article  CAS  Google Scholar 

  18. Karmali PP, Simberg D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv, 2011, 8: 343–357

    Article  CAS  Google Scholar 

  19. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. P Natl Acad Sci USA, 2008, 105: 14265–14270

    Article  CAS  Google Scholar 

  20. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc, 2011, 133: 2525–2534

    Article  CAS  Google Scholar 

  21. Mortensen NP, Hurst GB, Wang W, Foster CM, Nallathamby PD, Retterer ST. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale, 2013, 5: 6372–6380

    Article  CAS  Google Scholar 

  22. Miclaus T, Bochenkov VE, Ogaki R, Howard KA, Sutherland DS. Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. Nano Lett, 2014, 14: 2086–2093

    Article  CAS  Google Scholar 

  23. Ashby J, Pan S, Zhong W. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl Mater Interfaces, 2014, 6: 15412–15419

    CAS  Google Scholar 

  24. Milani S, Bombelli FB, Pitek AS, Dawson KA, Radler J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano, 2012, 6: 2532–2541

    Article  CAS  Google Scholar 

  25. Shang W, Nuffer JH, Dordick JS, Siegel RW. Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett, 2007, 7: 1991–1995

    Article  CAS  Google Scholar 

  26. Du X, Shi B, Tang Y, Dai S and Qiao SZ. Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery. Biomaterials, 2014, 35: 5580–5590

    Article  CAS  Google Scholar 

  27. Ge Y, Bruno M, Wallace K, Winnik W, Prasad RY. Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide. Proteomics, 2011, 11: 2406–2422

    Article  CAS  Google Scholar 

  28. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc, 2010, 132: 5761–5768

    Article  CAS  Google Scholar 

  29. Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol, 2012, 7: 779–786

    Article  CAS  Google Scholar 

  30. Lesniak A, Fenaroli F, Monopoli MR, Aberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano, 2012, 6: 5845–5857

    Article  CAS  Google Scholar 

  31. Lacerda SHD, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF. Interaction of gold nanoparticles with common human blood proteins. ACS Nano, 2010, 4: 365–379

    Article  Google Scholar 

  32. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. P Natl Acad Sci USA, 2007, 104: 2050–2055

    Article  CAS  Google Scholar 

  33. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Letters, 2007, 7: 914–920

    Article  CAS  Google Scholar 

  34. Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol, 2009, 4: 577–580

    Article  Google Scholar 

  35. Xian F, Hendrickson CL, Marshall AG. High resolution mass spectrometry. Anal Chem, 2012, 84: 708–719

    Article  CAS  Google Scholar 

  36. Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev, 2012, 41: 3912–3928

    Article  CAS  Google Scholar 

  37. Sund J, Alenius H, Vippola M, Savolainen K, Puustinen A. Proteomic characterization of engineered nanomaterial-protein interactions in relation to surface reactivity. ACS Nano, 2011, 5: 4300–4309

    Article  CAS  Google Scholar 

  38. Blunk T, Hochstrasser DF, Sanchez JC, Muller BW, Muller RH. Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis, 1993, 14: 1382–1387

    Article  CAS  Google Scholar 

  39. Harnisch S, Muller RH. Plasma protein adsorption patterns on emulsions for parenteral administration: establishment of a protocol for two-dimensional polyacrylamide electrophoresis. Electrophoresis, 1998, 19: 349–354

    Article  CAS  Google Scholar 

  40. Goppert TM, Muller RH. Alternative sample preparation prior to two-dimensional electrophoresis protein analysis on solid lipid nanoparticles. Electrophoresis, 2004, 25: 134–140

    Article  Google Scholar 

  41. Thode K, Luck M, Semmler W, Muller RH, Kresse M. Determination of plasma protein adsorption on magnetic iron oxides: sample preparation. Pharmaceut Res, 1997, 14: 905–910

    Article  CAS  Google Scholar 

  42. Jansch M, Stumpf P, Graf C, Ruhl E, Muller RH. Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharmaceut, 2012, 428: 125–133

    Article  CAS  Google Scholar 

  43. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LDN, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu XY, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TSK, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A. A draft map of the human proteome. Nature, 2014, 509: 575–581

    Article  CAS  Google Scholar 

  44. Capriotti AL, Caracciolo G, Cavaliere C, Crescenzi C, Pozzi D, Lagana A. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface. Anal Bioanal Chem, 2011, 401: 1195–1202

    Article  CAS  Google Scholar 

  45. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano, 2011, 5: 7155–7167

    Article  CAS  Google Scholar 

  46. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc, 2012, 134: 2139–2147

    Article  CAS  Google Scholar 

  47. Zhang HZ, Burnum KE, Luna ML, Petritis BO, Kim JS, Qian WJ, Moore RJ, Heredia-Langner A, Webb-Robertson BJM, Thrall BD, Camp DG, Smith RD, Pounds JG, Liu T. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics, 2011, 11: 4569–4577

    Article  CAS  Google Scholar 

  48. Turriziani B, Garcia-Munoz A, Pilkington R, Raso C, Kolch W, von Kriegsheim A. On-beads digestion in conjunction with datadependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics. Biology (Basel), 2014, 3: 320–332

    CAS  Google Scholar 

  49. Lin S, Yao G, Qi D, Li Y, Deng C, Yang P, Zhang X. Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres. Anal Chem, 2008, 80: 3655–3665

    Article  CAS  Google Scholar 

  50. Sun LL, Li YH, Yang P, Zhu GJ, Dovichi NJ. High efficiency and quantitatively reproducible protein digestion by trypsin-immobilized magnetic microspheres. J Chromatogr A, 2012, 1220: 68–74

    Article  CAS  Google Scholar 

  51. Hu ZY, Zhao L, Zhang HY, Zhang Y, Wu RA, Zou HF. The on-bead digestion of protein corona on nanoparticles by trypsin immobilized on the magnetic nanoparticle. J Chromatogr A, 2014, 1334: 55–63

    Article  CAS  Google Scholar 

  52. Hu Z, Zhang H, Zhang Y, Wu R, Zou H. Nanoparticle size matters in the formation of plasma protein coronas on Fe3O4 nanoparticles. Colloids Surf B Biointerfaces, 2014, 121: 354–361

    Article  CAS  Google Scholar 

  53. Tate S, Larsen B, Bonner R, Gingras AC. Label-free quantitative proteomics trends for protein-protein interactions. J Proteomics, 2013, 81: 91–101

    Article  CAS  Google Scholar 

  54. Hsu JL, Huang SY, Chow NH, Chen SH. Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem, 2003, 75: 6843–6852

    Article  CAS  Google Scholar 

  55. Righetti PG, Campostrini N, Pascali J, Hamdan M, Astner H. Quantitative proteomics: a review of different methodologies. Eur J Mass Spectrom, 2004, 10: 335–348

    Article  CAS  Google Scholar 

  56. Miyagi M, Rao KC. Proteolytic 18O-labeling strategies for quantitative proteomics. Mass Spectrom Rev, 2007, 26: 121–136

    Article  CAS  Google Scholar 

  57. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc, 2009, 4: 484–494

    Article  CAS  Google Scholar 

  58. Liu Z, Cao J, He Y, Qiao L, Xu C, Lu H, Yang P. Tandem 18O stable isotope labeling for quantification of N-glycoproteome. J Proteome Res, 2010, 9: 227–236

    Article  CAS  Google Scholar 

  59. Lundgren DH, Hwang SI, Wu LF, Han DK. Role of spectral counting in quantitative proteomics. Expert Rev Proteomic, 2010, 7: 39–53

    Article  CAS  Google Scholar 

  60. Cai X, Ramalingam R, Wong HS, Cheng J, Ajuh P, Cheng SH, Lam YW. Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomedicine, 2013, 9: 583–593

    Article  CAS  Google Scholar 

  61. Hu ZY, Sun Z, Zhang Y, Wu RA, Zou HF. Glycoproteome quantification of human lung cancer cells exposed to amorphous silica nanoparticles. Acta Chim Sinica, 2012, 70: 2059–2065

    Article  CAS  Google Scholar 

  62. Zhu W, Smith JW, Huang CM. Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol, 2010, 2010: 840518

    Google Scholar 

  63. Liu HB, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem, 2004, 76: 4193–4201

    Article  CAS  Google Scholar 

  64. Capriotti AL, Caracciolo G, Caruso G, Cavaliere C, Pozzi D, Samperi R, Lagana A. Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins. Anal Bioanal Chem, 2013, 405: 635–645

    Article  CAS  Google Scholar 

  65. Capriotti AL, Caracciolo G, Caruso G, Foglia P, Pozzi D, Samperi R, Lagana A. DNA affects the composition of lipoplex protein corona: a proteomics approach. Proteomics, 2011, 11: 3349–3358

    Article  CAS  Google Scholar 

  66. Docter D, Distler U, Storck W, Kuharev J, Wunsch D, Hahlbrock A, Knauer SK, Tenzer S, Stauber RH. Quantitative profiling of the protein coronas that form around nanoparticles. Nat Protoc, 2014, 9: 2030–2044

    Article  CAS  Google Scholar 

  67. Shannahan JH, Lai X, Ke PC, Podila R, Brown JM, Witzmann FA. Silver nanoparticle protein corona composition in cell culture media. Plos One, 2013, 8: e74001

    Article  Google Scholar 

  68. Wu Y, Wang F, Liu Z, Qin H, Song C, Huang J, Bian Y, Wei X, Dong J, Zou H Five-plex isotope dimethyl labeling for quantitative proteomics. Chem Commun, 2014, 50: 1708–1710

    Article  CAS  Google Scholar 

  69. Gevaert K, Impens F, Ghesquiere B, Van Damme P, Lambrechts A, Vandekerckhove J. Stable isotopic labeling in proteomics. Proteomics, 2008, 8: 4873–4885

    Article  CAS  Google Scholar 

  70. Yao XD, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem, 2001, 73: 2836–2842

    Article  CAS  Google Scholar 

  71. Petritis BO, Qian WJ, Camp DG, Smith RD. A simple procedure for effective quenching of trypsin activity and prevention of 18O-labeling back-exchange. J Proteome Res, 2009, 8: 2157–2163

    Article  CAS  Google Scholar 

  72. Pan Y, Ye M, Zhao L, Cheng K, Dong M, Song C, Qin H, Wang F, Zou H. N-terminal labeling of peptides by trypsin-catalyzed ligation for quantitative proteomics. Angew Chem, 2013, 52: 9205–9209

    Article  CAS  Google Scholar 

  73. Bordusa F. Proteases in organic synthesis. Chem Rev, 2002, 102: 4817–4868

    Article  CAS  Google Scholar 

  74. Koeller KM, Wong CH. Enzymes for chemical synthesis. Nature, 2001, 409: 232–240

    Article  CAS  Google Scholar 

  75. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. P Natl Acad Sci USA, 1999, 96: 6591–6596

    Article  CAS  Google Scholar 

  76. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 2002, 1: 376–386

    Article  CAS  Google Scholar 

  77. Ong SE. The expanding field of SILAC. Anal Bioanal Chem, 2012, 404: 967–976

    Article  CAS  Google Scholar 

  78. Wasdo SC, Barber DS, Denslow ND, Powers KW, Palazuelos M, Stevens SM, Moudgil BM, Roberts SM. Differential binding of serum proteins to nanoparticles. Int J Nanotechnol, 2008, 5: 92–115

    Article  CAS  Google Scholar 

  79. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotopecoded affinity tags. Nat Biotechnol, 1999, 17: 994–999

    Article  CAS  Google Scholar 

  80. Zieske LR. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J Exp Bot, 2006, 57: 1501–1508

    Article  CAS  Google Scholar 

  81. Wiese S, Reidegeld KA, Meyer HE, Warscheid B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics, 2007, 7: 340–350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren’an Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wu, R. Proteomic profiling of protein corona formed on the surface of nanomaterial. Sci. China Chem. 58, 780–792 (2015). https://doi.org/10.1007/s11426-015-5395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5395-9

Keywords

Navigation