Skip to main content
Log in

Enzyme-free amplified detection of microRNA using target-catalyzed hairpin assembly and magnesium ion-dependent deoxyribozyme

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

As microRNAs (miRNAs) are aberrantly expressed in a variety of cancers, detecting them precisely is of great importance. Here we constructed a sensitive and selective enzyme-free sensing platform for miRNA detection based on target-catalyzed hairpin assembly and magnesium ion-dependent deoxyribozyme (Mg2+-dependent DNAzyme). This sensing method introduces two amplification circuits simultaneously and shows a low detection limit of 1 pmol/L. This enzyme-free method is especially preferred because of its facility and economy. Furthermore, this amplified sensor shows high selectivity for discriminating perfectly complementary target and other mismatched RNAs. Therefore, the established strategy could be used as a simple, sensitive and selective method for target miRNA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136: 215–233

    Article  CAS  Google Scholar 

  2. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007, 449: 682–688

    Article  CAS  Google Scholar 

  3. Hagen JW, Lai EC. MicroRNA control of cell-cell signaling during development and disease. Cell Cycle, 2008, 7: 2327–2332

    Article  CAS  Google Scholar 

  4. Friedman RC, Farh KKH, Burge CB, Bartell DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009, 19: 92–105

    Article  CAS  Google Scholar 

  5. Li J, Yao B, Huang H, Wang Z, Sun C, Fan Y, Chang Q, Li S. Real-time polymerase chain reaction microRNA detection based on enzymatic stem-loop probes ligation. Anal Chem, 2009, 81: 5446–5451

    Article  CAS  Google Scholar 

  6. Várallyay É, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc, 2008, 3: 190–196

    Article  Google Scholar 

  7. Zhang LR, Zhu G, Zhang CY. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification. Anal Chem, 2014, 86: 6703–6709

    Article  CAS  Google Scholar 

  8. Li C, Li Z, Jia H, Yan J. One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP). Chem Commun, 2011, 47: 2595–2597

    Article  CAS  Google Scholar 

  9. Xiang GM, Jiang DN, Luo FK, Liu F, Liu L, Pu X. Sensitive detection of microRNAs using hemin/G-quadruplex concatamers as trace labels and RNA endonuclease-aided target recycling for amplification. Sensor Actuat B-Chem, 2014, 195: 515–519

    Article  CAS  Google Scholar 

  10. Yin BC, Liu YQ, Ye BC. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J Am Chem Soc, 2012, 134: 5064–5067

    Article  CAS  Google Scholar 

  11. Ge J, Zhang LL, Liu SJ, Yu RQ, Chu X. A highly sensitive target-primed rolling circle amplification (TPRCA) method for fluorescent in situ hybridization detection of microRNA in tumor cells. Anal Chem, 2014, 86: 1808–1815

    Article  CAS  Google Scholar 

  12. JamesáYang C. Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chem Commun, 2012, 48: 194–196

    Article  Google Scholar 

  13. Ge ZL, Lin MH, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal Chem, 2014, 86: 2124–2130

    Article  CAS  Google Scholar 

  14. Yin P, Choi HMT, Calvert CR, Pierce NA. Programming biomolecular self-assembly pathways. Nature, 2008, 451: 318–322

    Article  CAS  Google Scholar 

  15. Qian Y, Wang CY, Gao FL. Enzyme-free amplification for sensitive electrochemical detection of DNA via target-catalyzed hairpin assembly assisted current change. Talanta, 2014, 130: 33–38

    Article  CAS  Google Scholar 

  16. Qian Y, Tang DQ, Du LL, Zhang Y, Zhang L, Gao F. A novel signal-on electrochemical DNA sensor based on target catalyzed hairpin assembly strategy. Biosens Bioelectron, 2015, 64: 177–181

    Article  CAS  Google Scholar 

  17. Li B, Ellington AD, Chen X. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nuleic Acids Res, 2011, 39: e110

    Article  CAS  Google Scholar 

  18. Zhu S, Si ML, Wu H. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem, 2007, 282: 14328–14336

    Article  CAS  Google Scholar 

  19. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res, 2005, 65: 6029–6033

    Article  CAS  Google Scholar 

  20. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem, 2011, 57: 84–91

    Article  CAS  Google Scholar 

  21. Wang F, Elbaz J, Teller C, Willner I. Amplified detection of DNA through an autocatalytic and catabolic DNAzyme-mediated process. Angew Chem Int Ed, 2011, 50: 295–299

    Article  CAS  Google Scholar 

  22. Lu CH, Wang F, Willner I. Zn2+-ligation DNAzyme-driven enzymatic and nonenzymatic cascades for the amplified detection of DNA. J Am Chem Soc, 2012, 134: 10651–10658

    Article  CAS  Google Scholar 

  23. Elbaz J, Lioubashevski O, Wang F, Remacle F, Leviner RD, Willner I. DNA computing circuits using libraries of DNAzyme subunits. Nature Nanotech, 2010, 5: 417–422

    Article  CAS  Google Scholar 

  24. Zhang XB, Kong RM, Lu Y. Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem (Palo Alto Calif), 2011, 4: 105–128

    Article  CAS  Google Scholar 

  25. Yang L, Liu C, Ren W, Li Z. Graphene surface-anchored fluorescence sensor for sensitive detection of microRNA coupled with enzyme-free signal amplification of hybridization chain reaction. ACS Appl Mater Inter, 2012, 4: 6450–6453

    Article  CAS  Google Scholar 

  26. Wang F, Elbaz J, Orbach R, Magen N, Willner I. Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires. J Am Chem Soc, 2011, 133: 17149–17151

    Article  CAS  Google Scholar 

  27. Wang F, Elbaz J, Willner I. Enzyme-free amplified detection of DNA by an autonomous ligation DNAzyme machinery. J Am Chem Soc, 2012, 134: 5504–5507

    Article  CAS  Google Scholar 

  28. Qing ZH, He XX, Huang J, Wang K, Zou Z, Qing T, Mao Z, Shi H, He D. Target-catalyzed dynamic assembly-based pyrene excimer switching for enzyme-free nucleic acid amplified detection. Anal Chem, 2014, 86: 4934–4939

    Article  CAS  Google Scholar 

  29. Zhu DB, Zhang L, Ma WG, Lu S, Xing X. Detection of microRNA in clinical tumor samples by isothermal enzyme-free amplification and label-free graphene oxide-based SYBR Green I fluorescence platform. Biosens Bioelectron, 2015, 65: 152–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Tong or Lan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, B., Song, X. et al. Enzyme-free amplified detection of microRNA using target-catalyzed hairpin assembly and magnesium ion-dependent deoxyribozyme. Sci. China Chem. 58, 1906–1911 (2015). https://doi.org/10.1007/s11426-015-5391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5391-0

Keywords

Navigation