Skip to main content
Log in

Iron-catalyzed aerobic oxidative amidation of tertiary amines with carboxylic acids

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An oxidative amidation of tertiary amines with carboxylic acids has been developed in the presence of FeCl3·6H2O as catalyst and oxygen as oxidant. A variety of tertiary amides were obtained in good to excellent yields from inexpensive and readily available reagents. The possible reaction pathways were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cupido T, Tulla-Puche J, Spengler J, Albericio F. The synthesis of naturally occuring peptides and their analogs. Curr Opin Drug Discovery Dev, 2007, 10: 768–783

    CAS  Google Scholar 

  2. Bode JW. Emerging methods in amide- and peptide-bond formation. Curr Opin Drug Discovery Dev, 2006, 9: 765–775

    CAS  Google Scholar 

  3. Humphrey JM, Chamberlin AR. Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem Rev, 1997, 97: 2243–2266

    Article  CAS  Google Scholar 

  4. Valeur E, Bradley M. Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev, 2009, 38: 606–631

    Article  CAS  Google Scholar 

  5. Larock RC. Comprehensive Organic Transformations. New York: VCH, 1999

    Google Scholar 

  6. Gunanathan C, Yehoshoa BD, Milstein D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science, 2007, 317: 790–792

    Article  CAS  Google Scholar 

  7. Ghosh SC, Muthaiah S, Zhang Y, Xu X, Hong SH. Direct amide synthesis from alcohols and amines by phosphine-free ruthenium catalyst systems. Adv Synth Catal, 2009, 351: 2643–2649

    Article  CAS  Google Scholar 

  8. Wang Y, Zhu D, Tang L, Wang S, Wang Z. Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble Gold/DNA catalyst. Angew Chem Int Ed, 2011, 50: 8917–8921

    Article  CAS  Google Scholar 

  9. Soule JF, Miyamura H, Kobayashi S. Powerful amide synthesis from alcohols and amines under aerobic conditions catalyzed by gold or gold/iron, -nickel or -cobalt nanoparticles. J Am Chem Soc, 2011, 133: 18550–18553

    Article  CAS  Google Scholar 

  10. Kegnæs S, Mielby J, Mentzel UV, Jensen T, Fristrup P, Riisager A. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts. Chem Commun, 2012, 48: 2427–2429

    Article  Google Scholar 

  11. Nakagawa K, Inoue H, Minami K. Oxidation with nickel peroxide. A new synthesis of amides from aldehydes or alcohols. Chem Commun, 1966: 17–18

    Google Scholar 

  12. Nakagawa K, Mineo S, Kawamura S, Horikawa M, Tokumoto T, Mori O. Oxidation with nickel peroxide. XII. Synthesis of nitriles from aldehydes. Synth Commun, 1979, 9: 529–531

    Article  CAS  Google Scholar 

  13. Murahashi SI, Naota T, Saito E. Ruthenium-catalyzed amidation of nitriles with amines. A novel, facile route to amides and polyamides. J Am Chem Soc, 1986, 108: 7846–7847

    Article  CAS  Google Scholar 

  14. Cobley CJ, van den Heuvel M, Abbadi A, de Vries JG. Platinum catalysed hydrolytic amidation of unactivated nitriles. Tetrahedron Lett, 2000, 41: 2467–2470

    Article  CAS  Google Scholar 

  15. Allen CL, Lapkin AA, Williams JMJ. An iron-catalysed synthesis of amides from nitriles and amines. Tetrahedron Lett, 2009, 50: 4262–4264

    Article  CAS  Google Scholar 

  16. Callens E, Burton AJ, Barrett AGM. Synthesis of amides using the Ritter reaction with bismuth triflate catalysis. Tetrahedron Lett, 2006, 47: 8699–8701

    Article  CAS  Google Scholar 

  17. Martinelli JR, Clark TP, Watson DA, Munday RH, Buchwald SL. Palladium-catalyzed aminocarbonylation of aryl chlorides at atmospheric pressure: the dual role of sodium phenoxide. Angew Chem Int Ed, 2007, 46: 8460–8463

    Article  CAS  Google Scholar 

  18. Brennfuhrer A, Neumann H, Beller M. Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew Chem Int Ed, 2009, 48: 4114–4133

    Article  Google Scholar 

  19. Dang TT, Zhu Y, Ghosh SC, Chen A, Chai CLL, Seayad AM. Atmospheric pressure aminocarbonylation of aryl iodides using palladium nanoparticles supported on MOF-5. Chem Commun, 2012, 48: 1805–1807

    Article  CAS  Google Scholar 

  20. Li Y, Jia F, Li Z. Iron-catalyzed oxidative amidation of tertiary amines with aldehydes. Chem Eur J, 2013, 19: 82–87

    Article  Google Scholar 

  21. Mai WP, Song G, Yuan JW, Yang LR, Sun GC, Xiao YM, Mao P, Qu LB. nBu4NI-catalyzed unexpected amide bond formation between aldehydes and aromatic tertiary amines. RSC Adv, 2013, 3: 3869–3892

    Article  CAS  Google Scholar 

  22. Grierson D. The polonovski reaction. In: Organic Reactions. Weinheim: John Wiley & Sons, Inc., 2004

    Google Scholar 

  23. Cooley JH, Evain EJ. Amine dealkylations with acyl chlorides. Synthesis, 1989: 1–7

    Google Scholar 

  24. Machara A, Cox DP, Hudlicky T. Direct synthesis of naltrexone by palladium-catalyzed N-demethylation/acylation of oxymorphone: the benefit of C-H activation and the intramolecular acyl transfer from C-14 hydroxy. Adv Synth Catal, 2012, 354: 2713–2718

    Article  CAS  Google Scholar 

  25. Carroll RJ, Leisch H, Scocchera E, Hudlicky T, Cox DP. Palladium-catalyzed N-demethylation/N-acylation of some morphine and tropane alkaloids. Adv Synth Catal, 2008, 350: 2984–2992

    Article  CAS  Google Scholar 

  26. Khai BT, Arcelli AJ. Homogeneous transition-metal catalysis. Cleavage of the C-N bond of tertiary amines by acid anhydrides in the presence of transition metal ions. Organomet Chem, 1983, 252: c9–c13

    Article  CAS  Google Scholar 

  27. Mariella RP, Brown KH. A novel SN1 displacement: the reaction of tertiary amines with acetic anhydride. Can J Chem, 1971, 49: 3348–3351

    Article  CAS  Google Scholar 

  28. Murata S, Suzuki K, Tamatani A, Miura M, Nomura M. Oxidative dealkylation of 4-substituted N,N-dialkylanilines with molecular oxygen in the presence of acetic anhydride promoted by cobalt(II) or copper(I) chloride. J Chem Soc Perkin Trans 1, 1992: 1387–1392

    Google Scholar 

  29. Li Y, Ma L, Li Z. Amide bond formation through iron-catalyzed oxidative amidation of tertiary amines with anhydrides. J Org Chem, 2013, 78: 5638–5642

    Article  CAS  Google Scholar 

  30. Chen X, Chen T, Li Q, Zhou Y, Han LB, Yin SF. Copper-catalyzed aerobic oxidative inert C-C and C-N bond cleavage: a new strategy for the synthesis of tertiary amides. Chem Eur J, 2014, 20: 12234–12238

    Article  CAS  Google Scholar 

  31. Zhang C, Xu Z, Shen T, Wu G, Zhang LG, Jiao N. Lewis acid promoted highly diastereoselective petasis Borono-Mannich reaction: efficient synthesis of optically active b,g-unsaturated a-amino acids. Org Lett, 2012, 14: 2062–2065

    Article  Google Scholar 

  32. Qin C, Wang Z, Chen F, Yang O, Jiao N. Iron-catalyzed C-H and C-C bond cleavage: a direct approach to amides from simple hydrocarbons. Angew Chem Int Ed, 2011, 50: 12595–12599

    Article  CAS  Google Scholar 

  33. Zhang C, Xu Z, Zhang L, Jiao N. Copper-catalyzed aerobic oxidative coupling of aryl acetaldehydes with anilines leading to a-ketoamides. Angew Chem Int Ed, 2011, 50: 11088–11092

    Article  CAS  Google Scholar 

  34. Bao YS, Zhaorigetu B, Agula B, Baiyin M, Jia M. Aminolysis of aryl ester using tertiary amine as amino donor via C-O and C-N bond activations. J Org Chem, 2014, 79: 803–808

    Article  CAS  Google Scholar 

  35. Murata S, Suzuki K, Tamatani A, Miura M, Nomura M. Oxidative dealkylation of 4-substituted N,N-dialkylanilines with molecular oxygen in the presence of acetic anhydride promoted by cobalt(II) or copper(I) chloride. J Chem Soc Perkin Trans 1, 1992: 1387–1392

    Google Scholar 

  36. Murata S, Tamatani A, Suzuki K, Miura M, Nomura M. Cobalt(II) chloride catalyzed oxidation of 4-substituted N,N-dialkylanilines with molecular oxygen in the presence of acetic anhydride. Chem Lett, 1990, 19: 757–760

    Article  Google Scholar 

  37. Hao W, Xi ZF. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives. Chem Eur J, 2014, 20: 2605–2612

    Article  CAS  Google Scholar 

  38. Gu LJ, Wang W, Li GP. Synthesis of 2-arylbenzoxazoles through oxidation of C-H bonds adjacent to oxygen atoms. Eur J Org Chem, 2014: 319–322

    Google Scholar 

  39. Du YD, Tse CW, Xu ZJ, Liu Y, Che CM. [FeIII(TF4DMAP)OTf] catalysed anti-Markovnikov oxidation of terminal aryl alkenes to aldehydes and transformation of methyl aryl tertiary amines to formamides with H2O2 as a terminal oxidant. Chem Commun, 2014. 50: 12669–12672

    Article  CAS  Google Scholar 

  40. Huo CD, Tang J. Aerobic oxidative mannich reaction promoted by catalytic amounts of stable radical cation salt. J Org Chem, 2014, 79: 9860–9864

    Article  CAS  Google Scholar 

  41. Bao YS, Jia ML. Aminolysis of aryl ester using tertiary amine as amino donor via C-O and C-N bond activations. J Org Chem, 2014, 79: 803–808

    Article  CAS  Google Scholar 

  42. Wang F, Luo CP, Deng GJ, Yang L. C(sp3)-C(sp3) bond formation via copper/Brønsted acid co-catalyzed C(sp3)-H bond oxidative cross-dehydrogenative-coupling (CDC) of azaarenes. Green Chem, 2014, 16: 2428–2431

    Article  CAS  Google Scholar 

  43. Zhang C, Jiao N. Copper-catalyzed aerobic oxidative dehydrogenative coupling of anilines leading to aromatic azo compounds using dioxygen as an oxidant. Angew Chem Int Ed, 2010, 49: 6174–6177

    Article  CAS  Google Scholar 

  44. Zhang C, Jiao N. Dioxygen activation under ambient conditions: Cu-catalyzed oxidative amidation-diketonization of terminal alkynes leading to α-ketoamides. J Am Chem Soc, 2010, 132: 28–29

    Article  CAS  Google Scholar 

  45. Li Y, Ma L, Li Z. Progress in the transition-metal catalyzed oxidation of tertiary amines. Chin J Org Chem, 2013, 33: 704–714

    Article  CAS  Google Scholar 

  46. Liu W, Liu J, Ogawa D, Nishihara Y, Guo X, Li Z. Iron-catalyzed oxidation of tertiary amines: synthesis of β-1,3-dicarbonyl aldehydes by three-component C-C couplings. Org Lett, 2011, 13: 6272–6275

    Article  CAS  Google Scholar 

  47. Li H, He Z, Guo X, Li W, Zhao X, Li Z. Iron-catalyzed selective oxidation of N-methyl amines: highly efficient synthesis of methylene-bridged bis-1,3-dicarbonyl compounds. Org Lett, 2009, 11: 4176–4179

    Article  CAS  Google Scholar 

  48. Lei Z, Ye J, Sun J, Shi ZJ. Direct alkenyl C-H functionalization of cyclic enamines with carboxylic acids via Rh catalysis assisted by hydrogen bonding. Org Chem Front, 2014, 1: 634–638

    Article  CAS  Google Scholar 

  49. Zheng Q, Wang W, Jiang G, Yu ZX. CuI-catalyzed C1-alkynylation of tetrahydroisoquinolines (THIQs) by A3 reaction with tunable iminium ions. Org Lett, 2013, 15: 5928–5931

    Article  CAS  Google Scholar 

  50. Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, Lan Y, Lei A. Visible-light-mediated decarboxylation/oxidative amidation of a-keto acids with amines under mild reaction conditions using O2. Angew Chem Int Ed, 2014, 53: 502–506

    Article  CAS  Google Scholar 

  51. Takahashi H, Kashiwa N, Hashimoto Y, Nagasawa K. Novel Mannich-type nucleophilic substitution reaction with tertiary aromatic amines. Tetrahedron Lett, 2002, 43: 2935–2938

    Article  CAS  Google Scholar 

  52. Penn JH, Owens WH, Petersen JL, Finklea HO, Snider DA. Mixed anhydrides: physical properties influenced by molecular structure. J Org Chem, 1993, 58: 2128–2133

    Article  CAS  Google Scholar 

  53. Chen H, Groot MJ, Vermeulen PE, Hanzlik RP. Oxidative N-dealkylation of p-cyclopropyl-N,N-dimethylaniline. A substituent effect on a radical-clock reaction rationalized by ab initio calculations on radical cation intermediates. J Org Chem, 1997, 62: 8227–8230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Li, Y. & Li, Z. Iron-catalyzed aerobic oxidative amidation of tertiary amines with carboxylic acids. Sci. China Chem. 58, 1310–1315 (2015). https://doi.org/10.1007/s11426-015-5368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5368-z

Keywords

Navigation