Skip to main content
Log in

Ru(II)-catalyzed ortho-amidation and decarboxylation of aromatic acids: a versatile route to meta-substituted N-aryl benzamides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Carboxylate as a promising and valuable directing group has attracted a great deal of attention. However, employing it as a traceless direction group has rarely been reported. We developed the ruthenium-catalyzed amidation of substituted benzoic acids with isocyanates via directed C-H functionalization followed by decarboxylation to afford the corresponding meta-substituted N-aryl benzamides, in which the carboxylate serves as a unique, removable directing group. Notably, this protocol can provide an efficient alternative to access meta-substituted N-aryl benzamides, which are much more difficult to prepare than ortho-substituted analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pattabiraman VR, Bode JW. Rethinking amide bond synthesis. Nature, 2011, 480: 471–479

    Article  CAS  Google Scholar 

  2. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev, 2009, 109: 259–302

    Article  CAS  Google Scholar 

  3. Cupido T, Tulla-Puche J, Spengler J, Albericio F. The synthesis of naturally occurring peptides and their analogues. Curr Opin Drug Discovery Dev, 2007, 10: 768–783

    CAS  Google Scholar 

  4. Carey JS, Laffan D, Thomson C, Williams MT. Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem, 2006, 4: 2337–2347

    Article  CAS  Google Scholar 

  5. Humphrey JM, Chamberlin AR. Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem Rev, 1997, 97: 2243–2266

    Article  CAS  Google Scholar 

  6. Xiao F, Liu Y, Tang C, Deng GJ. Peroxide-mediated transition-metal-free direct amidation of alcohols with nitroarenes. Org Lett, 2012, 14: 984–987

    Article  CAS  Google Scholar 

  7. Valeur E, Bradley M. Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev, 2009, 38: 606–631

    Article  CAS  Google Scholar 

  8. Han SY, Kim YA. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, 2004, 60: 2447–2467

    Article  CAS  Google Scholar 

  9. Al-Zoubi RM, Marion O, Hall DG. Direct and waste-free amidations and cycloadditions by organocatalytic activation of carboxylic acids at room temperature. Angew Chem Int Ed, 2008, 47: 2876–2879

    Article  CAS  Google Scholar 

  10. Charville H, Jackson D, Hodges G, Whiting A. The thermal and boron-catalyzed direct amide formation reactions: mechanistically understudied yet important processes. Chem Commun, 2010, 46: 1813–1823

    Article  CAS  Google Scholar 

  11. Montalbetti C, Falque V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61: 10827–10852

    Article  CAS  Google Scholar 

  12. Yoo WJ, Li CJ. Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. J Am Chem Soc, 2006, 128: 13064–13065

    Article  CAS  Google Scholar 

  13. Gnanaprakasam B, Milstein D. Synthesis of amides from esters and amines with liberation of H2 under neutral conditions. J Am Chem Soc, 2011, 133: 1682–1685

    Article  CAS  Google Scholar 

  14. Wang Y, Zhu DP, Tang L, Wang SJ, Wang ZY. Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble gold/DNA catalyst. Angew Chem Int Ed, 2011, 50: 8917–8921

    Article  CAS  Google Scholar 

  15. Jiang H, Liu B, Li Y, Wang A, Huang H. Synthesis of amides via palladium-catalyzed amidation of aryl halides. Org Lett, 2011, 13: 1028–1031

    Article  CAS  Google Scholar 

  16. Priyadarshini S, Joseph PJA, Kantam ML. Copper catalyzed cross-coupling reactions of carboxylic acids: an expedient route to amides, 5-substituted γ-lactams and α-acyloxy esters. RSC Adv, 2013, 3: 18283–18287

    Article  CAS  Google Scholar 

  17. Nordstrom LU, Vogt H, Madsen R. Amide synthesis from alcohols and amines by the extrusion of dihydrogen. J Am Chem Soc, 2008, 130: 17672–17673

    Article  CAS  Google Scholar 

  18. Correa A, Martin R. Ni-catalyzed direct reductive amidation via C-O bond cleavage. J Am Chem Soc, 2014, 136: 7253–7256

    Article  CAS  Google Scholar 

  19. For selected recent reviews, see: a) Girard SA, Knauber T, Li C-J. The cross-dehydrogenative coupling of Csp3-H bonds: a versatile strategy for C-C bond formations. Angew Chem Int Ed, 2014, 53: 74–100

    Article  CAS  Google Scholar 

  20. Engle KM, Mei T-S, Wasa M, Yu J-Q. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc Chem Res, 2012, 45: 788–802

    Article  CAS  Google Scholar 

  21. Giri R, Shi B-F, Engle KM, Maugel N, Yu J-Q. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity. Chem Soc Rev, 2009, 38: 3242–3272

    Article  CAS  Google Scholar 

  22. Li B-J, Shi Z-J. From C(sp2)-H to C(sp3)-H: systematic studies on transition metal-catalyzed oxidative C-C formation. Chem Soc Rev, 2012, 41: 5588–5598

    Article  CAS  Google Scholar 

  23. Colby DA, Tsai AS, Bergman RG, Ellman JA. Rhodium catalyzed chelation-assisted C-H bond functionalization reactions. Acc Chem Res, 2012, 45: 814–825

    Article  CAS  Google Scholar 

  24. Bras JL, Muzart J. Intermolecular dehydrogenative Heck reactions. Chem Rev, 2011, 111: 1170–1214

    Article  Google Scholar 

  25. Yeung CS, Dong VM. Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem Rev, 2011, 111: 1215–1292

    Article  CAS  Google Scholar 

  26. Liu C, Zhang H, Shi W, Lei A. Bond formations between two nucleophiles: transition metal catalyzed oxidative cross-coupling reactions. Chem Rev, 2011, 111: 1780–1824

    Article  CAS  Google Scholar 

  27. Willis MC. Transition metal catalyzed alkene and alkyne hydroacylation. Chem Rev, 2010, 110: 725–748

    Article  CAS  Google Scholar 

  28. Colby DA, Bergman RG, Ellman JA. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem Rev, 2010, 110: 624–655

    Article  CAS  Google Scholar 

  29. Lyons TW, Sanford MS. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem Rev, 2010, 110: 1147–1169

    Article  CAS  Google Scholar 

  30. Sun C-L, Li B-J, Shi Z-J. Direct C-H transformation via iron catalysis. Chem Rev, 2011, 111: 1293–1314

    Article  CAS  Google Scholar 

  31. Zhang C, Tang C, Jiao N. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem Soc Rev, 2012, 41: 3464–3484

    Article  CAS  Google Scholar 

  32. Wang C. Manganese-mediated C-C bond formation via C-H activation: from stoichiometry to catalysis. Synlett, 2013, 24: 1606–1613

    Article  CAS  Google Scholar 

  33. Rao Y, Shan G, Yang XL. Some recent advances in transition-metal-catalyzed ortho sp 2 C-H functionalization using Ru, Rh, and Pd. Sci China Chem, 2014, 57: 930–944

    Article  CAS  Google Scholar 

  34. Shin K, Ryu J, Chang S. Orthogonal reactivity of acyl azides in C-H activation: dichotomy between C-C and C-N amidations based on catalyst systems. Org Lett, 2014, 16: 2022–2025

    Article  CAS  Google Scholar 

  35. Muralirajan K, Parthasarathy K, Cheng C-H. Ru(II)-catalyzed amidation of 2-arylpyridines with isocyanates via C-H activation. Org Lett, 2014, 14: 4262–4265

    Article  Google Scholar 

  36. Hesp KD, Bergman RG, Ellman JA. Expedient synthesis of N-acyl anthranilamides and b-enamine amides by the Rh(III)-catalyzed amidation of aryl and vinyl C-H bonds with isocyanates. J Am Chem Soc, 2011, 133: 11430–11433

    Article  CAS  Google Scholar 

  37. Shang R, Liu L. Transition metal-catalyzed decarboxylative cross-coupling reactions. Sci China Chem, 2011, 54: 1670–1687

    Article  CAS  Google Scholar 

  38. Xiang S, Cai S, Zeng J, Liu X-W. Regio- and stereoselective synthesis of 2-deoxy-C-aryl glycosides via palladium catalyzed decarboxylative reactions. Org Lett, 2011, 13: 4608–4611

    Article  CAS  Google Scholar 

  39. Hu J, Zhao N, Yang B, Wang G, Guo L-N, Liang Y-M, Yang S-D. Copper-catalyzed C-P coupling through decarboxylation. Chem Eur J, 2011, 17: 5516–5521

    Article  CAS  Google Scholar 

  40. Wang C, Rakshit S, Glorius F. Palladium-catalyzed intermolecular decarboxylative coupling of 2-phenyl-benzoic acids with alkynes via C-H and C-C bond activation. J Am Chem Soc, 2010, 132: 14006–14008

    Article  CAS  Google Scholar 

  41. Goossen LJ, Rodríguez N, Lange PP, Linder C. Decarboxylative cross-coupling of aryl tosylates with aromatic carboxylate salts. Angew Chem Int Ed, 2010, 49: 1111–1114

    Article  CAS  Google Scholar 

  42. Ranjit S, Duan Z, Zhang P, Liu X. Synthesis of vinyl sulfides by copper-catalyzed decarboxylative C-S cross-coupling. Org Lett, 2010, 12: 4134–4136

    Article  CAS  Google Scholar 

  43. Wang C, Piel I, Glorius F. Palladium-catalyzed intramolecular direct arylation of benzoic acids by tandem decarboxylation/C-H activation. J Am Chem Soc, 2009, 131: 4194–4195

    Article  CAS  Google Scholar 

  44. Duan ZY, Ranjit S, Zhang PF, Liu XG. Synthesis of aryl sulfides by decarboxylative C-S cross-couplings. Chem Eur J, 2009, 15: 3666–3669

    Article  CAS  Google Scholar 

  45. Goossen LJ, Zimmermann B, Knauber T. Palladium/copper-catalyzed decarboxylative cross-coupling of aryl chlorides with potassium carboxylates. Angew Chem Int Ed, 2008, 47: 7103–7106

    Article  CAS  Google Scholar 

  46. Goossen LJ, Rodríguez N, Linder C. Decarboxylative biaryl synthesis from aromatic carboxylates and aryl triflates. J Am Chem Soc, 2008, 130: 15248–15249

    Article  CAS  Google Scholar 

  47. Goossen LJ, Deng GJ, Levy LM. Synthesis of biaryls via catalytic decarboxylative coupling. Science, 2006, 313: 662–664

    Article  CAS  Google Scholar 

  48. Cornella J, Righi M, Larrosa I. Carboxylic acids as traceless directing groups for formal meta-selective direct arylation. Angew Chem Int Ed, 2011, 50: 9429–9432

    Article  CAS  Google Scholar 

  49. Maehara A, Tsurugi H, Satoh T, Miura M. Regioselective C-H functionalization directed by a removable carboxyl group: palladium-catalyzed vinylation at the unusual position of indole and related heteroaromatic rings. Org Lett, 2008, 10: 1159–1162

    Article  CAS  Google Scholar 

  50. Mochida S, Hirano K, Satoh T, Miura M. Synthesis of stilbene and distyrylbenzene derivatives through rhodium-catalyzed ortho-olefination and decarboxylation of benzoic acids. Org Lett, 2010, 12: 5776–5779

    Article  CAS  Google Scholar 

  51. Mochida S, Hirano K, Satoh T, Miura M. Rhodium-catalyzed regioselective olefination directed by a carboxylic group. J Org Chem, 2011, 76: 3024–3033

    Article  CAS  Google Scholar 

  52. Bhadra S, Dzik WI, Gooßen LJ. Synthesis of aryl ethers from benzoates through carboxylate-directed C-H activating alkoxylation with concomitant protodecarboxylation. Angew Chem Int Ed, 2013, 52: 2959–2962

    Article  CAS  Google Scholar 

  53. Ackermann L, Lygin AV, Hofmann N. Ruthenium-catalyzed oxidative annulation by cleavage of C-H/N-H bonds. Angew Chem Int Ed, 2011, 50: 6379–6382

    Article  CAS  Google Scholar 

  54. Sarkar SD, Ackermann L. Ruthenium( II)-catalyzed C-H activation with isocyanates: a versatile route to phthalimides. Chem Eur J, 2014, 20: 13932–13936

    Article  Google Scholar 

  55. Kozhushkov SI, Ackermann L. Ruthenium-catalyzed direct oxidative alkenylation of arenes through twofold C-H bond functionalization. Chem Sci, 2013, 4: 886–896

    Article  CAS  Google Scholar 

  56. Mehta VP, Garcia-Lopez J-A, Greaney MF. Ruthenium-catalyzed cascade C-H functionalization of phenylacetophenones. Angew Chem Int Ed, 2014, 53: 1529–1533

    Article  CAS  Google Scholar 

  57. Tlili A, Schranck J, Pospech J, Neumann H, Beller M. Ruthenium-catalyzed carbonylative C-C coupling in water by directed C-H bond activation. Angew Chem Int Ed, 2013, 52: 6293–6297

    Article  CAS  Google Scholar 

  58. Nan J, Zhuo Z, Luo L, Bai L, Zheng H, Yuan Y, Liu J, Luan X, Wang Y. Ru(II)-catalyzed vinylative dearomatization of naphthols via a C(sp2)-H bond activation approach. J Am Chem Soc, 2013, 135: 17306–17309

    Article  CAS  Google Scholar 

  59. Zhang J, Ugrinov A, Zhao P. Ruthenium(II)/N-heterocyclic carbene catalyzed [3+2] carbocyclization with aromatic N[BOND]H ketimines and internal alkynes. Angew Chem Int Ed, 2013, 52: 6681–6684

    Article  CAS  Google Scholar 

  60. Chidipudi SR, Khan I, Lam HW. Functionalization of Csp3-H and Csp2-H bonds: synthesis of spiroindenes by enolate-directed ruthenium-catalyzed oxidative annulation of alkynes with 2-aryl-1,3-dicarbonyl compounds. Angew Chem Int Ed, 2012, 51: 12115–12119

    Article  Google Scholar 

  61. Ackermann L. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations. Accounts Chem Res, 2014, 47: 281–295

    Article  CAS  Google Scholar 

  62. Zheng Q-Z, Liang Y-F, Qin C, Jiao N. Ru(II)-catalyzed intermolecular C-H amidation of weakly coordinating ketones. Chem Commun, 2013, 49: 5654–5656

    Article  CAS  Google Scholar 

  63. Arockiam PB, Bruneau C, Dixneuf PH. Ruthenium(II)-catalyzed C-H bond activation and functionalization. Chem Rev, 2012, 112: 5879–5918

    Article  CAS  Google Scholar 

  64. Ackermann L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem Rev, 2011, 111: 1315–1345

    Article  CAS  Google Scholar 

  65. Kakiuchi F, Kan S, Igi K, Chatani N, Murai S. A ruthenium-catalyzed reaction of aromatic ketones with arylboronates: a new method for the arylation of aromatic compounds via C-H bond cleavage. J Am Chem Soc, 2003, 125: 1698–1699

    Article  CAS  Google Scholar 

  66. Kakiuchi F, Matsuura Y, Kan S, Chatani N. A RuH2(CO)(PPh3)3-catalyzed regioselective arylation of aromatic ketones with arylboronates via carbonhydrogen bond cleavage. J Am Chem Soc, 2005, 127: 5936–5945

    Article  CAS  Google Scholar 

  67. Padala K, Jeganmohan M. Ruthenium-catalyzed ortho-alkenylation of aromatic ketones with alkenes by C-H bond activation. Org Lett, 2011, 13: 6144–6147

    Article  CAS  Google Scholar 

  68. Goossen LJ, Rodriguez N, Linder C, Lange PP, Fromm A. Comparative study of copper- and silver-catalyzed protodecarboxylations of carboxylic acids. ChemCatChem, 2010, 2: 430–442

    Article  CAS  Google Scholar 

  69. Cornella J, Sanchez C, Banawa D, Larrosa I. Silver-catalysed protodecarboxylation of ortho-substituted benzoic acids. Chem Commun, 2009: 7176–7178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Ying Shi or Chao-Jun Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, XY., Dong, XF., Fan, J. et al. Ru(II)-catalyzed ortho-amidation and decarboxylation of aromatic acids: a versatile route to meta-substituted N-aryl benzamides. Sci. China Chem. 58, 1286–1291 (2015). https://doi.org/10.1007/s11426-015-5364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5364-3

Keywords

Navigation