Skip to main content
Log in

Mechanism of Pd-catalyzed selective C-H activation of aliphatic amines via four-membered-ring cyclometallation pathway

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A theoretical study is carried out on Gaunt’s palladium-catalyzed selective C(sp3)-H activation of unprotected aliphatic amines. In this reaction, the methyl group is proposed to be activated through a four-membered cyclometallation pathway even though an ethyl group is present in the substrate. Our calculation shows that the methyl and ethyl activation processes proceed in nitrogen-atom-directed pathway rather than carbonyl-directed one. More important, methyl activation is more favorable than ethyl activation with nitrogen atom as the directing group. Further studies on the structural parameters show that the lactone structure in cyclic substrate is the origin of the selective methyl activation. When the lactone moiety is changed to ketone, ether or alkyl, the selectivity could be reversed so that the ethyl activation becomes more favorable. This result validates the proposal that lactone structure is key to selective methyl activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jia C, Kitamura T, Fujiwara Y. Catalytic Functionalization of arenes and alkanes via C-H bond activation. Acc Chem Res, 2001, 34: 633–639

    Article  CAS  Google Scholar 

  2. Godula K, Sames D. C-H bond functionalization in complex organic synthesis. Science, 2006, 312: 67–72

    Article  CAS  Google Scholar 

  3. Davies HML, Bois JD, Yu JQ. C-H functionalization in organic synthesis. Chem Soc Rev, 2011, 40: 1855–1856

    Article  CAS  Google Scholar 

  4. Yamaguchi J, Yamaguchi AD, Itami K. C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew Chem Int Ed, 2012, 51: 8960–9009

    Article  CAS  Google Scholar 

  5. Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF. C-H activation for the construction of C-B bonds. Chem Rev, 2010, 110: 890–931

    Article  CAS  Google Scholar 

  6. Daugulis O, Do HQ, Shabashov D. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. Acc Chem Res, 2009, 42: 1074–1086

    Article  CAS  Google Scholar 

  7. Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Functionalization of organic molecu les by transition-metal-cata lyzed C(sp3)-H activation. Chem Eur J, 2010, 16: 2654–2672

    Article  CAS  Google Scholar 

  8. Baudoin O. Transition metal-catalyzed arylation of unactivated C(sp3)-H bonds. Chem Soc Rev, 2011, 40: 4902–4911

    Article  CAS  Google Scholar 

  9. Dupont J, Consorti CC, Spencer J. The potential of palladacycles: more than just precatalysts. Chem Rev, 105, 2005: 2527–2572

    Article  CAS  Google Scholar 

  10. Lyons TW, Sanford MS. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem Rev, 2010, 110: 1147–1169

    Article  CAS  Google Scholar 

  11. Xiao B, Gong TJ, Xu J, Liu ZJ, Liu L. Palladium-catalyzed intermolecular directed C-H amidation of aromatic ketones. J Am Chem Soc, 2011, 133: 1466–1474

    Article  CAS  Google Scholar 

  12. Gong TJ, Xiao B, Cheng WM, Su W, Xu J, Liu ZJ, Liu L, Fu Y. Rhodium-catalyzed directed C-H cyanation of arenes with N-cyano-N-phenyl-p-toluenesulfonamide. J Am Chem Soc, 2013, 135: 10630–10636

    Article  CAS  Google Scholar 

  13. Xiao B, Liu ZJ, Liu L, Fu, Y. Palladium-catalyzed C-H activation/cross-coupling of pyridine N-oxides with nonactivated secondary alkyl bromides. J Am Chem Soc, 2013, 135: 616–619

    Article  CAS  Google Scholar 

  14. Xiao B, Li YM, Liu ZJ, Yang HY, Fu Y. Palladium-catalyzed monoselective C-H borylation of acetanilides under acidic conditions. Chem Commu, 2012, 48: 4854–4856

    Article  CAS  Google Scholar 

  15. Gong TJ, Xiao B, Liu ZJ, Wan J, Xu J, Luo DF, Fu Y, Liu L. Rhodium-catalyzed selective C-H activation/olefination of phenol carbamates. Org Lett, 2011, 13: 3235–3237

    Article  CAS  Google Scholar 

  16. Xiao B, Fu Y, Xu J, Gong TJ, Dai JJ, Yi J, Liu L. Pd(II)-catalyzed C-H activation/arylaryl coupling of phenol esters. J Am Chem Soc, 2010, 132: 468–469

    Article  CAS  Google Scholar 

  17. Desai LV, Hull KL, Sanford MS. Palladium-catalyzed oxygenation of unactivated sp3 C-H bonds. J Am Chem Soc, 2004, 126: 9542–9543

    Article  CAS  Google Scholar 

  18. Zaitsev VG, Shabashov D, Daugulis O. Highly regioselective arylation of sp3 C-H bonds catalyzed by palladium acetate. J Am Chem Soc, 2005, 127: 13154–13155

    Article  CAS  Google Scholar 

  19. Wasa M, Engle KM, Yu JQ. Pd(0)/PR3-catalyzed intermolecular arylation of sp3 C-H bonds. J Am Chem Soc, 2009, 131: 9886–9887

    Article  CAS  Google Scholar 

  20. McNally A, Haffemayer B, Collins BSL, Gaunt MJ. Palladium-catalysed C-H activation of aliphatic amines to give strained nitrogen heterocycles. Nature, 2014, 510: 129–133

    Article  CAS  Google Scholar 

  21. Xiao B, Gong TJ, Liu ZJ, Liu JH, Luo DF, Xu J, Liu L. Synthesis of dibenzofurans via palladium-catalyzed phenol-directed C-H activation/C-O cyclization. J Am Chem Soc, 2011, 133: 9250–9253

    Article  CAS  Google Scholar 

  22. Sun CL, Li BJ, Shi ZJ. Direct C-H transformation via iron catalysis. Chem Rev, 2011, 111: 1293–1314

    Article  CAS  Google Scholar 

  23. Zhang Q, Yu HZ, Fu Y. Mechanistic study of palladium-catalyzed chemoselective C(sp3)-H activation of carbamoyl chloride. Organometallics, 2013, 32: 4165–4173

    Article  CAS  Google Scholar 

  24. Giri R, Lan Y, Liu P, Houk KN, Yu JQ. Understanding reactivity and stereoselectivity in palladium catalyzed diastereoselective sp3 C-H bond activation: intermediate characterization and computational studies. J Am Chem Soc, 2012, 134: 14118–14126

    Article  CAS  Google Scholar 

  25. Desai LV, Stowers KJ, Sanford MS. Insights into directing group ability in palladium-catalyzed C-H bond functionalization. J Am Chem Soc, 2008, 130: 13285–13293

    Article  CAS  Google Scholar 

  26. Medina JM, McMahon TC, Jiménez-Osés G, Houk KN, Garg NK. Cycloadditions of cyclohexynes and cyclopentyne. J Am Chem Soc, 2014, 136: 14706–14709

    Article  CAS  Google Scholar 

  27. Liu F, Liang Y, Houk KN. Theoretical elucidation of the origins of substituent and strain effects on the rates of diels-alder reactions of 1,2,4,5-tetrazines. J Am Chem Soc, 2014, 136: 11483–11493

    Article  CAS  Google Scholar 

  28. Wu YD, Yu ZX. A theoretical study on the mechanism and diastereoselectivity of the kulinkovich hydroxycyclopropanation reaction. J Am Chem Soc, 2001, 123: 5777–5786

    Article  CAS  Google Scholar 

  29. Xu L, Hilton MJ, Zhang X, Norrby PO, Wu YD, Sigman MS, Wiest O. Mechanism, reactivity, and selectivity in palladium-catalyzed redox-relay heck arylations of alkenyl alcohols. J Am Chem Soc, 2014, 136: 1960–1967

    Article  CAS  Google Scholar 

  30. Wang T, Liang Y, Yu ZX. Density functional theory study of the mechanism and origins of stereoselectivity in the asymmetric simmons-smith cyclopropanation with charette chiral dioxaborolane ligand. J Am Chem Soc, 2011, 133: 9343–9353

    Article  CAS  Google Scholar 

  31. M06/6-311++G**/SDD//M06/6-31++G*/lanl2dz method was used, and please see Supporting Information for corresponding transition states.

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Revision C.01. Wallingford CT: Gaussian, Inc., 2009

    Google Scholar 

  33. Becke AD. Densityfunctional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG. Development of the colic-salvetti correlation-energy formulainto a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  35. Zhang SL, Shi L, Ding YQ. Theoretical analysis of the mechanism of palladium(II) acetate-catalyzed oxidative Heck coupling of electron-deficient arenes with alkenes: effects of the pyridine-type ancillary ligand and origins of the meta-regioselectivity. J Am Chem Soc, 2011, 133: 20218–20229

    Article  CAS  Google Scholar 

  36. Tang SY, Guo QX, Fu Y. Mechanistic origin of ligand-controlled regioselectivity in Pd-catalyzed C-H Activation/arylation of thiophenes. Chem Eur J, 2011, 17: 13866–13876

    Article  CAS  Google Scholar 

  37. Yu HZ, Fu Y, Guo QX, Lin ZY. Theoretical investigations on mechanisms of Pd(OAc)2-catalyzed intramolecular diaminations in the presence of bases and oxidants. Organometallics, 2009, 48: 4507–4512

    Article  Google Scholar 

  38. Shang R, Yang ZW, Wang Y, Zhang SL, Liu L. Palladium-catalyzed decarboxylative couplings of 2-(2-azaaryl)acetates with aryl halides and triflates. J Am Chem Soc, 2010, 132: 14391–14393

    Article  CAS  Google Scholar 

  39. Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys, 1985, 82: 284–298

    CAS  Google Scholar 

  40. Fukui K. A formulation of the reaction coordinate. J Phys Chem, 1970, 74: 4161–4163

    Article  CAS  Google Scholar 

  41. Fukui K. The path of chemical reactions: the IRC approach. Acc Chem Res, 1981, 14: 363–368

    Article  CAS  Google Scholar 

  42. Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B, 2009, 113: 6378–6396

    Article  CAS  Google Scholar 

  43. Ehlers AW, Bohme M, Dapprich S, Gobbi A, Hollwarth A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Frenking G. A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc-Cu, Y-Ag and La-Au. Chem Phys Lett, 1993, 208: 111–114

    Article  CAS  Google Scholar 

  44. Hollwarth A, Bohme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Frenking G. A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al Bi and f-type polarization functions for Zn, Cd, Hg. Chem Phys Lett, 1993, 208: 237–240

    Article  Google Scholar 

  45. Li Z, Fu Y, Zhang SL, Guo QX, Liu L. Heck-type reactions of imine derivatives: a DFT study. Chem Asian J, 2010, 5: 1475–1486

    CAS  Google Scholar 

  46. Li Z, Zhang SL, Fu Y, Guo QX, Liu L. Mechanism of Ni-catalyzed selective C-O bond activation in cross-coupling of aryl esters. J Am Chem Soc, 2009, 131: 8815–8823

    Article  CAS  Google Scholar 

  47. Jiang YY, Fu Y, Liu L. Mechanism of palladium-catalyzed decarboxylative cross-coupling between cyanoacetate salts and aryl halides. Sci China Chem, 2012, 55: 2057–2062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yu, H. & Fu, Y. Mechanism of Pd-catalyzed selective C-H activation of aliphatic amines via four-membered-ring cyclometallation pathway. Sci. China Chem. 58, 1316–1322 (2015). https://doi.org/10.1007/s11426-015-5360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5360-7

Keywords

Navigation