Science China Chemistry

, Volume 58, Issue 7, pp 1200–1205 | Cite as

Latent fingerprint enhancement on conductive substrates using electrodeposition of copper

  • Meiqin ZhangEmail author
  • Xi Yu
  • Gang Qin
  • Yu Zhu
  • Meiling Wang
  • Qianhui Wei
  • Yang Zhang
  • Xueji Zhang


We present a novel method for the development of a latent fingerprint by selective electrodeposition of a copper thin film from sulfate solution onto the conductive substrate between fingerprint ridges to generate a negative image of the fingerprint deposit. After optimizing the parameters (deposition time, deposition potential, and copper concentration), the preferential electrodeposition of copper films allowed latent fingerprints on six kinds of conductive surfaces (indium/tin oxide-coated glass, silver sheet, platinum sheet, gold sheet, copper sheet, and a stainless steel coin) to be successfully developed with high resolution. In addition, this technique could also be exploited to visualize latent fingerprints on rough and dirty surfaces. The quality of the developed fingerprints was estimated visually and the morphology of the copper film was characterized by field emission scanning electron microscopy.


latent fingerprint visualization electrodeposition copper thin film forensic science electrochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomas GL, Reynoldson TE. Some observations on fingerprint deposits. J Phys D, Appl Phys, 1975, 8: 724–729CrossRefGoogle Scholar
  2. 2.
    Lee HC, Gaensslen RE. Advances in Fingerprinting Technology. 2nd ed. Boca Raton: CRC Press, 2001CrossRefGoogle Scholar
  3. 3.
    Haan PV. Physics and fingerprints. Contemp Phys, 2006, 47: 209–230CrossRefGoogle Scholar
  4. 4.
    Jensen O, Nielsen E. “Rusters”. The corrosive action of palmar sweat: II. Physical and chemical factors in palmar hyperhidrosis. Acta Derm, 1979, 59: 139–143Google Scholar
  5. 5.
    Ricci C, Phiriyavityopas P, Curum N, Chan KL, Jickells S, Kazarian SG. Chemical imaging of latent fingerprint residues. Appl Spectrosc, 2007, 61: 514–522CrossRefGoogle Scholar
  6. 6.
    Hawthorne MR. Fingerprint Analysis and Understanding. Boca Raton: CRC Press, 2009Google Scholar
  7. 7.
    Champod C, Lennard C, Margot P, Stoilovic M. Fingerprints and other Ridge Skin Impressions. Boca Raton: CRC Press, 2004CrossRefGoogle Scholar
  8. 8.
    Hazarika P. Russell DA. Advances in fingerprint analysis. Angew Chem Int Ed, 2012, 51: 3524–3531CrossRefGoogle Scholar
  9. 9.
    Li Y, Xu LR, Su B. Aggregation induced emission for the recognition of latent fingerprints. Chem Commun, 2012, 48: 4109–4111CrossRefGoogle Scholar
  10. 10.
    Given BW. Latent fingerprints on cartridges and expended cartridge casings. J Forensic Sci, 1976, 21: 587–594Google Scholar
  11. 11.
    Ramos AS, Vieira MT. An efficient strategy to detect latent fingermarks on metallic surfaces. Forensic Sci Int, 2011, 217: 196–203CrossRefGoogle Scholar
  12. 12.
    Choi MJ, Mcdonagh AM, Maynard P, Roux C. Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Sci Int, 2008, 179: 87–97CrossRefGoogle Scholar
  13. 13.
    Jones BJ, Downham R, Sears VG. Nanoscale analysis of the interaction between cyanoacrylate and vacuum metal deposition in the development of latent fingermarks on low-density polyethylene. J Forensic Sci, 2012, 57: 196–200CrossRefGoogle Scholar
  14. 14.
    Bersellini C, Garofano L, Giannetto M, Lusardi F, Mori G. Development of latent fingerprints on metallic surfaces using electropolymerization processes. J Forensic Sci, 2001, 46: 871–877Google Scholar
  15. 15.
    Beresford AL, Hillman AR. Electrochromic enhancement of latent fingerprints on stainless steel surfaces. Anal Chem, 2010, 82: 483–486CrossRefGoogle Scholar
  16. 16.
    Brown RM, Hillman AR. Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene). Phys Chem Chem Phys, 2012, 14: 8653–8661CrossRefGoogle Scholar
  17. 17.
    Xu LR, Li Y, Wu SZ, Liu XH, Su B. Imaging latent fingerprints by electrochemiluminescence. Angew Chem Int Ed, 2012, 124: 8192–8196CrossRefGoogle Scholar
  18. 18.
    Shan XN, Patel U, Wang SP, Iglesias R, Tao NJ. Imaging local electrochemical current via surface plasmon resonance. Science, 2010, 327: 1363–1366CrossRefGoogle Scholar
  19. 19.
    Zhang MQ, Becue A, Prudent M, Champod C, Girault HH. SECM imaging of MMD-enhanced latent fingermarks. Chem Commun, 2007: 3948–3950Google Scholar
  20. 20.
    Zhang MQ, Girault HH. Fingerprint imaging by scanning electrochemical microscopy. Electrochem Commun, 2007, 9: 1778–1782CrossRefGoogle Scholar
  21. 21.
    Zhang MQ, Girault HH. SECM for imaging and detection of latent fingerprints. Analyst, 2009, 134: 25–30CrossRefGoogle Scholar
  22. 22.
    Qin G, Zhang MQ, Zhang T, Zhang Y, McIntosh M, Li X, Zhang XJ. Label-free electrochemical imaging of latent fingerprints on metal surfaces. Electroanalysis, 2012, 24: 1027–1032CrossRefGoogle Scholar
  23. 23.
    Zhang MQ, Qin G, Zuo YP, Zhang T, Zhang Y, Su L, Qiu H, Zhang XJ. SECM imaging of latent fingerprints developed by deposition of Al-doped ZnO thin film. Electrochim Acta, 2012, 78: 412–416CrossRefGoogle Scholar
  24. 24.
    Williams G, McMurray N, Worsley DA. Latent fingerprint detection using a scanning kelvin microprobe. J Forensic Sci, 2001, 46: 1085–1092Google Scholar
  25. 25.
    Williams G, McMurray N. Latent fingermark visualisation using a scanning Kelvin probe. Forensic Sci Int, 2007, 167: 102–109CrossRefGoogle Scholar
  26. 26.
    Grujicic D, Pesic B. Electrodeposition of copper: the nucleation mechanisms. Electrochim Acta, 2002, 47: 2901–2912CrossRefGoogle Scholar
  27. 27.
    Quinet M, Lallemand F, Ricq L, Hihn JY, Delobelle P, Arnould C, Mekhalif Z. Influence of organic additives on the initial stages of copper electrodeposition on polycrystalline platinum. Electrochim Acta, 2009, 54: 1529–1536CrossRefGoogle Scholar
  28. 28.
    Qin G, Zhang MQ, Zhang Y, Zhu Y, Liu SL, Wu WJ, Zhang XJ. Visualizing latent fingerprints by electrodeposition of metal nanoparticles. J Electroanal Chem, 2013, 693: 122–126CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Meiqin Zhang
    • 1
    Email author
  • Xi Yu
    • 1
  • Gang Qin
    • 1
  • Yu Zhu
    • 1
  • Meiling Wang
    • 1
  • Qianhui Wei
    • 1
  • Yang Zhang
    • 1
  • Xueji Zhang
    • 1
  1. 1.Research Center for Bioengineering and Sensing TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations