Skip to main content
Log in

The adsorption and dissociation of multilayer CH3OH on TiO2 (110)

  • Articles
  • Special Issue Heterogeneous Catalysis Theory
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The adsorption and dissociation of CH3OH on TiO2 (110) were studied using density functional theory methods. Our results suggest that CH3OH molecules can adsorb up to 3/4 ML (1 ML=5.2×1014 molecules/cm2) coverage at five-coordinated titanium (Ti5c) sites to form the first layer. In the second layer, the CH3OH is adsorbed at bridge-bonded oxygen, and from the third layer, the CH3OH molecules form a hydrogen-bonded network with each other. The theoretical results show that dissociation of multilayer adsorbed methanol to aldehyde occurs through a stepwise pathway, with easy O-H bond dissociation and rate-determining C-H bond dissociation. The dissociation barriers for 8 or 12 CH3OH molecules on TiO2 are higher than that for low coverage by 0.15–0.21 eV; this suggests that the dissociation of multilayer adsorbed CH3OH is harder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima A, Honda K. Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature, 1972, 37: 238–245

    Google Scholar 

  2. Oregan B, Grätzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Article  CAS  Google Scholar 

  3. Linsebigler AL, Lu G, Yates JJT. Photocatalysis on TiO2 surface-principles, mechanisms, and selected results. Chem Rev, 1995, 95: 735–738

    Article  CAS  Google Scholar 

  4. Diebold U. The surface science of titanium dioxide. Surf Sci, 2003, 48: 53–229

    Article  CAS  Google Scholar 

  5. Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep, 2008, 63: 515–582

    Article  CAS  Google Scholar 

  6. Gundlach L, Ernstorfer R, Willig F. Ultrafast interfacial electron transfer from the excited state of anchored molecules into a semiconductor. Prog Surf Sci Rep, 2007, 82: 355–377

    Article  CAS  Google Scholar 

  7. Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep, 2008, 63: 515–582

    Article  CAS  Google Scholar 

  8. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891–2959

    Article  CAS  Google Scholar 

  9. Henderson MA. A surface science perspective on TiO2 photocatalysis. Surf Sci Rep, 2011, 66: 185–297

    Article  CAS  Google Scholar 

  10. Bates SP, Gillan MJ, Kresse G. Adsorption of methanol on TiO2 (110): a first-principles investigation. J Phys Chem B, 1998, 102: 2017–2026

    Article  CAS  Google Scholar 

  11. Henderson MA, Otero-Tapia S, Castro ME. The chemistry of methanol on the surface: the TiO2 (110) influence of vacancies and coadsorbed species. Faraday Discuss, 1999, 114: 313–329

    Article  CAS  Google Scholar 

  12. Pang CL, Lindsay R, Thornton G. Chemical reactions on rutile TiO2 (110). Chem Soc Rev, 2008, 37: 2328–2353

    Article  CAS  Google Scholar 

  13. Onda K, Li B, Zhao J, Petek H. The electronic structure of methanol covered TiO2 (110) surfaces. Surf Sci, 2005, 593: 32–37

    Article  CAS  Google Scholar 

  14. Ma Z, Guo Q, Mao X, Ren ZF, Wang X, Xu CB, Yang WS, Dai DX, Zhou CY, Fan HJ, Yang XM. Photocatalytic dissociation of ethanol on TiO2 (110) by near-band-gap excitation. J Phys Chem C, 2013, 117: 10336–10344

    Article  CAS  Google Scholar 

  15. Guo Q, Xu C, Ren Z, Yang WS, Ma ZB, Dai DX, Fan HJ, Minton TK, Yang XM. Stepwise photocatalytic dissociation of methanol and water on TiO2 (110). J Am Chem Soc, 2012, 134: 13366–13373

    Article  CAS  Google Scholar 

  16. Zhou C, Ren Z, Tan S, Ma ZB, Mao XC, Dai DX, Fan HQ, Fan HQ, Yang XM, LaRue J, Cooper R, Wodtke AM, Wang Z, Li ZY, Wang B, Yang JL, Hou JG. Site-specific photocatalytic splitting of methanol on TiO2 (110). Chem Sci, 2010, 1: 575–580

    Article  CAS  Google Scholar 

  17. Phillips KR, Jensen SC, Baron M, Li SC, Friend CM. Sequential photo-oxidation of methanol to methyl formate on TiO2 (110). J Am Chem Soc, 2013, 135: 574–577

    Article  CAS  Google Scholar 

  18. Yuan Q, Wu Z, Jin Y, Xu LS, Xiong F, Ma YS, Huang WX. Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO2 (110) surface. J Am Chem Soc, 2013, 135: 5212–5219

    Article  CAS  Google Scholar 

  19. Guo Q, Xu C, Yang W, Ren ZF, Ma ZB, Dai DX, Minton TK, Yang XM. Methyl formate production on TiO2 (110), initiated by methanol photocatalysis at 400 nm. Phys Chem C, 2013, 117: 5293–5300

    Article  CAS  Google Scholar 

  20. Zhang Z, Bondarchuk O, White JM, Kay BD, Dohnalek Z. Imaging adsorbate O-H bond cleavage: methanol on TiO2(110). J Am Chem Soc, 2006, 128: 4198–4199

    Article  CAS  Google Scholar 

  21. Zhou C, Ren Z, Tan S, Ma Z, Mao X, Dai D, Fan H, Yang X, LaRue J, Cooper R, Wodtke AM, Wang Z, Li Z, Wang B, Yang J, Hou J. Site-specific photocatalytic splitting of methanol on TiO2 (110). Chem Sci, 2010, 1: 575–580

    Article  CAS  Google Scholar 

  22. Sánchez de Armas R, Oviedo J, San Miguel MÁ, Sanz JF. Methanol adsorption and dissociation on TiO2 (110) from first principles calculations. J Phys Chem C, 2007, 111: 10023–10028

    Google Scholar 

  23. Oviedo J, Sánchez de Armas R, San Miguel MÁ, Sanz JF. Methanol and water dissociation on TiO2 (110): the role of surface oxygen. J Phys Chem C, 2008, 112: 17737–17740

    Article  CAS  Google Scholar 

  24. Zhao J, Yang J, Petek H. Theoretical study of the molecular and electronic structure of methanol on a TiO2 (110) surface. Phys Rev B, 2009, 80: 235416

    Article  Google Scholar 

  25. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  26. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  27. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  29. Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys, 2000, 113: 9901–9904

    Article  CAS  Google Scholar 

  30. Henkelman G, Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys, 2000, 113: 9978–9985

    Article  CAS  Google Scholar 

  31. Perdew J, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations. J Chem Phys, 1996, 105: 9982–9985

    Article  CAS  Google Scholar 

  32. Paier J, Hirsch R, Marsman M, Kresse G. The Perdew-Burke-Ernzerh of exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J Chem Phys, 2005, 122: 234102

    Article  Google Scholar 

  33. Zhang X, Wen B, Zhou CY, Ren ZF, Liu LM. First-principles study of methanol oxidation into methyl formate on rutile TiO2(110). J Phys Chem C, 2014, 118: 19859–19868

    Article  Google Scholar 

  34. Kowalski PM, Meyer B, Marx D. Composition, structure, and stability of the rutile TiO2 (110) surface: oxygen depletion, hydroxylation, hydrogen migration, and water adsorption. Phys Rev B, 2009, 79: 115410

    Article  Google Scholar 

  35. Stefanovich EV, Truong TN. Ab initio study of water adsorption on TiO2 (110): molecular adsorption versus dissociative chemisorption. Chem Phys Lett, 1999, 299: 623–629

    Article  CAS  Google Scholar 

  36. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Fan, H. The adsorption and dissociation of multilayer CH3OH on TiO2 (110). Sci. China Chem. 58, 614–619 (2015). https://doi.org/10.1007/s11426-015-5342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5342-9

Keywords

Navigation