Skip to main content
Log in

Theoretical study of propene oxidation on Bi2O3 surfaces

  • Articles
  • Special Issue Heterogeneous Catalysis Theory
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The role of bismuth in the selective oxidation of propene has long been debated. We performed density functional calculations to study the dehydrogenation reaction of propene on Bi2O3 surfaces. Our calculated thermodynamic data reveal that the first dehydrogenation of propene on the most stable (010) surface and the (100) surface are difficult. Our calculations indicate that the barrier of the first hydrogen abstraction on the high Miller index surface (211) is much lower than those on the (100) and (010) surfaces, and is close to the experimental one. Further dehydrogenation is shown to be difficult and production of 1,5-hexadiene through dimerization of allyl is likely, in agreement with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L, Peng B, Peng LM, Guo XF, Xie ZK, Ding WP. Mesostructural Bi-Mo-O catalyst: correct structure leading to high performance. Sci Rep, 2013, 3: 2881

    Google Scholar 

  2. Ayame A, Uchida K, Iwataya M, Miyamoto M. X-ray photoelectron spectroscopic study on α- and γ-bismuth molybdate surfaces exposed to hydrogen, propene and oxygen. Appl Catal A, 2002, 227: 7–17

    Article  CAS  Google Scholar 

  3. Burrington JD, Kartisek CT, Grasselli RK. Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts: II. Allyl alcohol as a probe for the allylic intermediate. J Catal, 1980, 63: 235–254

    Article  CAS  Google Scholar 

  4. Adams CR, Jennings TJ. Mechanism studies of the catalytic oxidation of propylene. J Catal, 1964, 3: 549–558

    Article  CAS  Google Scholar 

  5. Snyder TP, Hill CG. The mechanism for the partial oxidation of propylene over bismuth molybdate catalysts. Catal Rev-Sci Eng, 1989, 31: 43–95

    Article  CAS  Google Scholar 

  6. Burrington JD, Grasselli RK. Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts. J Catal, 1979, 59: 79–99

    Article  CAS  Google Scholar 

  7. Brückman K, Grabowski R, Haber J, Mazurkiewicz A, Sloczynski J, Wiltowski T. The role of different MoO3 crystal faces in elementary steps of propene oxidation. J Catal, 1987, 104: 71–79

    Article  Google Scholar 

  8. Grzybowska B, Haber J, Janas J. Interaction of allyl iodide with molybdate catalysts for the selective oxidation of hydrocarbons. J Catal, 1977, 49: 150–163

    Article  CAS  Google Scholar 

  9. Swift HE, Bozik JE, Ondrey JA. Dehydrodimerization of propylene using bismuth oxide as the oxidant. J Catal, 1971, 21: 212–224

    Article  CAS  Google Scholar 

  10. Massoth FE, Scarpiello DA. Kinetics of bismuth oxide reduction with propylene. J Catal, 1971, 21: 225–238

    Article  CAS  Google Scholar 

  11. Martir W, Lunsford JH. The formation of gas-phase π-allyl radicals from propylene over bismuth oxide and γ-bismuth molybdate catalysts. J Am Chem Soc, 1981, 103: 3728–3732.

    Article  CAS  Google Scholar 

  12. Drlscol DJ, Lunsford JH. Kinetic isotope effect in the partial oxidatlon of propylene over Bi2O3. J Phys Chem, 1983, 87: 301–303

    Article  Google Scholar 

  13. Ueda W, Asakawa K, Chen CL, Moro-Oka Y, Ikawa T. Catalytic properties of tricomponent metal oxides having the scheelite structure: I. Role of bulk diffusion of lattice oxide ions in the oxidation of propylene. J Catal, 1986, 101: 360–368

    Article  CAS  Google Scholar 

  14. Adams CR, Voge HH, Morgan CZ, Armstrong WE. Oxidation of butylenes and propylene over bismuth molybdate. J Catal, 1964, 3: 379–386

    Article  CAS  Google Scholar 

  15. Peacock JM, Parker AJ, Ashmore PG, Hockey JA. The oxidation of propene over bismuth oxide, molybdenum oxide, and bismuth molybdate catalysts: IV. The selective oxidation of propene. J Catal, 1969, 15: 398–406

    Article  CAS  Google Scholar 

  16. Mehandru SP, Anderson AB, Brazdil JF. CH bond activation and radical-surface reactions for propylene and methane over α-Bi2O3. J Chem Soc, Faraday Trans, 1987, 83: 463–475

    Article  CAS  Google Scholar 

  17. Jang YH, Goddard WA. Selective oxidation and ammoxidation of propene on bismuth molybdates, ab initio calculations. Top Catal, 2001, 15: 273–289

    Article  CAS  Google Scholar 

  18. Jang YH, Goddard WA. Mechanism of selective oxidation and ammoxidation of propene on bismuth molybdates from DFT calculations on model clusters. J Phys Chem B, 2002, 106: 5997–6013

    Article  CAS  Google Scholar 

  19. Pudar S, Oxgaard J, Chenoweth K, Duin ACT, Goddard WA. Mechanism of selective oxidation of propene to acrolein on bismuth molybdates from quantum mechanical calculations. J Phys Chem C, 2007, 111: 16405–16415

    Article  CAS  Google Scholar 

  20. Getsoian AB, Shapovalov V, Bell AT. DFT+U investigation of propene oxidation over bismuth molybdate: active sites, reaction intermediates, and the role of bismuth. J Phys Chem C, 2013, 117: 7123–7137

    Article  CAS  Google Scholar 

  21. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  23. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  24. Malmros G. The crystal structure of alpha-Bi2O3. Acta Chem Scand, 1970, 24: 384–396

    Article  CAS  Google Scholar 

  25. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  Google Scholar 

  26. Lei YH, Chen ZX. Density functional study of the stability of various α-Bi2O3 surfaces. J Chem Phys, 2013, 138: 054703

    Article  Google Scholar 

  27. Davad RL. CRC Handbook of Chemistry and Physics. 88th ed. Boca Raton: Taylor & Francies Group, 2007–2008

    Google Scholar 

  28. Haber J, Witko M. Oxidation catalysis-electronic theory revisited. J Catal, 2003, 216: 416–424

    Article  CAS  Google Scholar 

  29. Fu G, Xu X, Lu X, Wan HL. Mechanisms of methane activation and transformation on molybdenum oxide based catalysts. J Am Chem Soc, 2005, 127: 3989–3996

    Article  CAS  Google Scholar 

  30. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett, 2008, 100: 136406

    Article  Google Scholar 

  31. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132: 154104

    Article  Google Scholar 

  32. Brønsted JN. Acid and basic catalysis. Chem Rev, 1928, 5: 231–335

    Article  Google Scholar 

  33. Evans MG, Polanyi M. Inertia and driving force of chemical reactions. Trans Faraday Soc, 1938, 34: 11–24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Xu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, YH., Chen, ZX. Theoretical study of propene oxidation on Bi2O3 surfaces. Sci. China Chem. 58, 593–600 (2015). https://doi.org/10.1007/s11426-015-5341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5341-x

Keywords

Navigation