Skip to main content
Log in

Theoretical insight into the selectivities of copper-catalyzing heterogeneous reduction of carbon dioxide

  • Reviews
  • Special Issue Heterogeneous Catalysis Theory
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The chemical reduction of carbon dioxide (CO2) has always drawn intensive attention as it can not only remove CO2 which is the primary greenhouse gas but also produce useful fuels. Industrial synthesis of methanol utilizing copper-based catalysts is a commonly used process for CO2 hydrogenation. Despite extensive efforts on improving its reaction mechanism by identifying the active sites and optimizing the operating temperature and pressure, it is still remains completely unveiled. The selectivities of CO2 electroreduction at copper electrode could mainly be towards carbon monoxide (CO), formic acid (HCOOH), methane (CH4) or ethylene (C2H4), which depends on the chemical potentials of hydrogen controlled by the applied potential. Interestingly, methanol could hardly be produced electrochemically despite utilizing metallic copper as catalysts in both processes. Moreover, the mechanistic researches have also been performed aiming to achieve the higher selectivity towards more desirable higher hydrocarbons. In this work, we review the present proposals of reaction mechanisms of copper catalyzing CO2 reduction in industrial methanol synthesis and electrochemical environment in terms of density functional theory (DFT) calculations, respectively. In addition, the influences of the simulation methods of solvation and electrochemical model at liquid-solid interface on the selectivity are discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OECD/IEA. World energy investment outlook. World Energy Outlook. 2014

    Google Scholar 

  2. IPCC. Mitigation of climate change. http://www.ipcc.ch, 2014

    Google Scholar 

  3. Holtz MH, Nance PK, Finley RJ. Reduction of greenhouse gas emissions through CO2 EOR in texas. 2001, 8: 187–199

    CAS  Google Scholar 

  4. Liu XM, Lu GQ, Yan Z-F, Beltramini J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res, 2003, 42: 6518–6530

    Article  CAS  Google Scholar 

  5. Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev, 2011, 40: 3703–3727

    Article  CAS  Google Scholar 

  6. Mikkelsen M, Jorgensen M, Krebs FC. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci, 2010, 3: 43–81

    Article  CAS  Google Scholar 

  7. Askgaard TS, Norskov JK, Ovesen CV, Stoltze P. A kinetic model of methanol synthesis. J Catal, 1995, 156: 229–242

    Article  CAS  Google Scholar 

  8. Rozovskii A, Lin G. Fundamentals of methanol synthesis and decomposition. Top Catal, 2003, 22: 137–150

    Article  CAS  Google Scholar 

  9. Luo G, Fouetio Kengne B-A, Mcllroy DN, McDonald AG. A novel nano fischer-tropsch catalyst for the production of hydrocarbons. 2014, 33: 693–698

    CAS  Google Scholar 

  10. Gokhale AA, Dumesic JA, Mavrikakis M. On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc, 2008, 130: 1402–1414

    Article  CAS  Google Scholar 

  11. Ovesen CV, Clausen BS, Hammershøi BS, Steffensen G, Askgaard T, Chorkendorff I, Nørskov JK, Rasmussen PB, Stoltze P, Taylor P. A microkinetic analysis of the water-gas shift reaction under industrial conditions. J Catal, 1996, 158: 170–180

    Article  CAS  Google Scholar 

  12. Olah AG, Goeppert A, Prakash GKS. Beyond Oil and Gas: the Methanol Economy. Weinhein: Wiley-VCH, 2009

    Google Scholar 

  13. Frederick FS, Davies P. Production of oxygenated hydrocarbons. US Patent, 3326956, 1967-06-20

    Google Scholar 

  14. Lee S. Methanol Synthesis Technology. Florida: CRC Press, 1990

    Google Scholar 

  15. Behrens M, Studt F, Kasatkin I, Kuhl S, Havecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Nørskov JK, Schlogl R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science, 2012, 336: 893–897

    Article  CAS  Google Scholar 

  16. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Fernandez Sanz J, Rodriguez JA. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science, 2014, 345: 546–550

    Article  CAS  Google Scholar 

  17. Waugh KC. Methanol synthesis. Catal Today, 1992, 15: 51–75

    Article  CAS  Google Scholar 

  18. Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta, 1994, 39: 1833–1839

    Article  CAS  Google Scholar 

  19. Hori Y, Murata A. Electrochemical evidence of intermediate formation of adsorbed CO in cathodic reduction of CO2 at a nickel electrode. Electrochim Acta, 1990, 35: 1777–1780

    Article  CAS  Google Scholar 

  20. Hori Y, Kikuchi K, Suzuki S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem Lett, 1985, 11: 1695–1698

    Article  Google Scholar 

  21. Taguchi S, Aramata A. Surface-structure sensitive reduced CO2 formation on Pt single crystal electrodes in sulfuric acid solution. Electrochim Acta, 1994, 39: 2533–2537

    Article  CAS  Google Scholar 

  22. Hori Y, Kikuchi K, Murata A, Suzuki S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem Lett, 1986, 15: 897–898

    Article  Google Scholar 

  23. Gattrell M, Gupta N, Co A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem, 2006, 594: 1–19

    Article  CAS  Google Scholar 

  24. Cheng D, Negreiros FR, Apra E, Fortunelli A. Computational approaches to the chemical conversion of carbon dioxide. Chem Sus Chem, 2013, 6: 944–965

    Article  CAS  Google Scholar 

  25. Anilin M, Karl W, Mathias P. Production of oxygenated organic compounds. US Patent, 1558559. 1925-10-27

    Google Scholar 

  26. Klier K, Chatikavanij V, Herman RG, Simmons GW. Catalytic synthesis of methanol from CO/H2: IV. The effects of carbon dioxide. J Catal, 1982, 74: 343–360

    Article  CAS  Google Scholar 

  27. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA. Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: Use of 14C-labelled reactants. Appl Catal, 1987, 30: 333–338

    Article  CAS  Google Scholar 

  28. Kagan YB, Rozovskij AY, Liberov LG, Slivinskij EV, Lin GI, Loktev SM, Bashkirov AN. Study of mechanism of methanol synthesis from carbon monoxide and hydrogen using radioactive carbon isotope C14. Dokl Akad Nauk SSSR, 1975, 224: 1081–1084

    CAS  Google Scholar 

  29. Zhao YF, Yang Y, Mims C, Peden CHF, Li J, Mei DH. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): complex reaction network and the effects of H2O. J Catal, 2011, 281: 199–211

    Article  CAS  Google Scholar 

  30. Lee JS, Lee KH, Lee SY, Kim YG. A comparative study of methanol synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 catalyst. J Catal, 1993, 144: 414–424

    Article  CAS  Google Scholar 

  31. Madon RJ, Braden D, Kandoi S, Nagel P, Mavrikakis M, Dumesic JA. Microkinetic analysis and mechanism of the water gas shift reaction over copper catalysts. J Catal, 2011, 281: 1–11

    Article  CAS  Google Scholar 

  32. Schumacher N, Andersson K, Grabow LC, Mavrikakis M, Nerlov J, Chorkendorff I. Interaction of carbon dioxide with Cu overlayers on Pt(111). Surf Sci, 2008, 602: 702–711

    Article  CAS  Google Scholar 

  33. Grabow LC, Mavrikakis M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal, 2011, 1: 365–384

    Article  CAS  Google Scholar 

  34. Joo OS, Jung KD, Han SH, Uhm SJ, Lee DK, Ihm SK. Migration and reduction of formate to form methanol on Cu/ZnO catalysts. Appl Catal A, 1996, 135: 273–286

    Article  CAS  Google Scholar 

  35. Bowker M, Hadden RA, Houghton H, Hyland JNK, Waugh KC. The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts. J Catal, 1988, 109: 263–273

    Article  CAS  Google Scholar 

  36. Liu ZP, Hu P. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. J Am Chem Soc, 2003, 125: 1958–1967

    Article  CAS  Google Scholar 

  37. Cao XM, Burch R, Hardacre C, Hu P. Density functional theory study on the cleavage mechanism of the carbonyl bond in amides on flat and stepped Ru surfaces: hydrogen-induced or direct C-O bond breaking? J Phys Chem C, 2012, 116: 18713–18721

    Article  CAS  Google Scholar 

  38. Zhang J, Cao XM, Hu P, Zhong ZY, Borgna A, Wu P. Density functional theory studies of ethanol decomposition on Rh(211). J Phys Chem C, 2011, 115: 22429–22437

    Article  CAS  Google Scholar 

  39. Burch R, Paun C, Cao X-M, Crawford P, Goodrich P, Hardacre C, Hu P, McLaughlin L, Sá J, Thompson JM. Catalytic hydrogenation of tertiary amides at low temperatures and pressures using bimetallic Pt/Re-based catalysts. J Catal, 2011, 283: 89–97

    Article  CAS  Google Scholar 

  40. Tang QL, Hong QJ, Liu ZP. CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic monte carlo. J Catal, 2009, 263: 114–122

    Article  CAS  Google Scholar 

  41. Mansilla C, Avril S, Imbach J, Le Duigou A. CO2-free hydrogen as a substitute to fossil fuels: what are the targets? Prospective assessment of the hydrogen market attractiveness. Int J Hydrogen Energy, 2012, 37: 9451–9458

    Article  CAS  Google Scholar 

  42. Tang QL, Liu ZP. Identification of the active Cu phase in the water-gas shift reaction over Cu/ZrO2 from first principles. J Phys Chem C, 2010, 114: 8423–8430

    Article  CAS  Google Scholar 

  43. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Fernández Sanz J, Rodriguez JA. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science, 2014, 345: 546–550

    Article  CAS  Google Scholar 

  44. Yang Y, White MG, Liu P. Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu(111) surfaces. J Phys Chem C, 2011, 116: 248–256

    Article  Google Scholar 

  45. Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc, Faraday Trans 1, 1989, 85: 2309–2326

    Article  CAS  Google Scholar 

  46. Schouten KJP, Kwon Y, van der Ham CJM, Qin Z, Koper MTM. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci, 2011, 2: 1902–1909

    Article  CAS  Google Scholar 

  47. Li CW, Kanan MW. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc, 2012, 134: 7231–7234

    Article  CAS  Google Scholar 

  48. Hori Y, Murata A, Takahashi R, Suzuki S. Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J Am Chem Soc, 1987, 109: 5022–5023

    Article  CAS  Google Scholar 

  49. Hori Y. Electrochemical CO2 reduction on metal electrodes. In: Vayenas GC, White ER, Gamboa-Aldeco ME, Eds. Modern Aspects of Electrochemistry. Volume 42: Electrochemistry and Physical Chemistry. New York: Springer, 2008. 89–189

    Chapter  Google Scholar 

  50. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci, 2010, 3: 1311

    Article  CAS  Google Scholar 

  51. Hansen JB, Højlund Nielsen PE. Methanol synthesis. In: Ertl G, Knözinger H, Schüth F, Weitkamp J, Eds. Handbook of Heterogeneous Catalysis. Weinheim: Wiley, 2008

    Google Scholar 

  52. Yu L, Pan XL, Cao XM, Hu P, Bao XH. Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J Catal, 2011, 282: 183–190

    Article  CAS  Google Scholar 

  53. Sheng T, Lin WF, Hardacre C, Hu P. Role of water and adsorbed hydroxyls on ethanol electrochemistry on Pd: new mechanism, active centers, and energetics for direct ethanol fuel cell running in alkaline medium. J Phys Chem C, 2014, 118: 5762–5772

    Article  CAS  Google Scholar 

  54. Skulason E, Tripkovic V, Bjorketun ME, Gudmundsdottir S, Karlberg G, Rossmeisl J, Bligaard T, Jonsson H, Norskov JK. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C, 2010, 114: 18182–18197

    Article  CAS  Google Scholar 

  55. Fang YH, Wei GF, Liu ZP. Theoretical modeling of electrode/electrolyte interface from first-principles periodic continuum solvation method. Catal Today, 2013, 202: 98–104

    Article  CAS  Google Scholar 

  56. Kavanagh R, Cao XM, Lin W, Hardacre C, Hu P. Acetaldehyde production in the direct ethanol fuel cell: mechanistic elucidation by density functional theory. J Phys Chem C, 2012, 116: 7185–7188

    Article  CAS  Google Scholar 

  57. Fang YH, Liu ZP. Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials. J Phys Chem C, 2009, 113: 9765–9772

    Article  CAS  Google Scholar 

  58. Kavanagh R, Cao XM, Lin WF, Hardacre C, Hu P. Origin of low CO2 selectivity on platinum in the direct ethanol fuel cell. Angew Chem Int Ed, 2012, 51: 1572–1575

    Article  CAS  Google Scholar 

  59. Morgan A, Kavanagh R, Lin WF, Hardacre C, Hu P. Electro-oxidation of methanol in an alkaline fuel cell: determination of the nature of the initial adsorbate. Phys Chem Chem Phys, 2013, 15: 20170–20175

    Article  CAS  Google Scholar 

  60. Sheng T, Lin WF, Hardacre C, Hu P. Significance of beta-dehydrogenation in ethanol electro-oxidation on platinum doped with Ru, Rh, Pd, Os and Ir. Phys Chem Chem Phys, 2014, 16: 13248–13254

    Article  CAS  Google Scholar 

  61. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B, 2004, 108: 17886–17892

    Article  Google Scholar 

  62. Durand WJ, Peterson AA, Studt F, Abild-Pedersen F, Norskov JK. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf Sci, 2011, 605: 1354–1359

    Article  CAS  Google Scholar 

  63. Peterson AA, Nørskov JK. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett, 2012, 3: 251–258

    Article  CAS  Google Scholar 

  64. Nie XW, Esopi MR, Janik MJ, Asthagiri A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew Chem Int Ed, 2013, 52: 2459–2462

    Article  CAS  Google Scholar 

  65. Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic JA, Nørskov JK, Mavrikakis M. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations. J Am Chem Soc, 2009, 131: 5809–5815

    Article  CAS  Google Scholar 

  66. Schouten KJP, Qin Z, Gallent EP, Koper MTM. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc, 2012, 134: 9864–9867

    Article  CAS  Google Scholar 

  67. DeWulf DW, Jin T, Bard AJ. Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. J Electrochem Soc, 1989, 136: 1686–1691

    Article  CAS  Google Scholar 

  68. Song T, Hu P. Insight into the solvent effect: a density functional theory study of cisplatin hydrolysis. J Chem Phys, 2006, 125: 091101

    Article  Google Scholar 

  69. Wang HF, Liu ZP. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model. J Phys Chem C, 2009, 113: 17502–17508

    Article  CAS  Google Scholar 

  70. Liu JL, Cao XM, Hu P. Density functional theory study on the activation of molecular oxygen on a stepped gold surface in an aqueous environment: a new approach for simulating reactions in solution. Phys Chem Chem Phys, 2014, 16: 4176–4185

    Article  CAS  Google Scholar 

  71. Cheng J, Sprik M. Alignment of electronic energy levels at electrochemical interfaces. Phys Chem Chem Phys, 2012, 14: 11245–11267

    Article  CAS  Google Scholar 

  72. Fang YH, Liu ZP. Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2(110). J Am Chem Soc, 2010, 132: 18214–18222

    Article  CAS  Google Scholar 

  73. Fang YH, Liu ZP. First principles tafel kinetics of methanol oxidation on Pt(111). Surf Sci, 2015, 631: 42–47

    Article  CAS  Google Scholar 

  74. Fang YH, Wei GF, Liu ZP. Catalytic role of minority species and minority sites for electrochemical hydrogen evolution on metals: surface charging, coverage, and tafel kinetics. J Phys Chem C, 2013, 117: 7669–7680

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Cao or P. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Cao, X. & Hu, P. Theoretical insight into the selectivities of copper-catalyzing heterogeneous reduction of carbon dioxide. Sci. China Chem. 58, 553–564 (2015). https://doi.org/10.1007/s11426-015-5340-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5340-y

Keywords

Navigation