Skip to main content
Log in

A DFT study of CO2 electrochemical reduction on Pb(211) and Sn(112)

  • Articles
  • Special Issue Heterogeneous Catalysis Theory
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical reduction of CO2 has the benefit of turning greenhouse gas emissions into useful resources. We performed a comparative study of the electrochemical reduction of CO2 on stepped Pb(211) and Sn(112) surfaces based on the results of density functional theory slab calculations. We mapped out the potential energy profiles for electrochemical reduction of CO2 to formate and other possible products on both surfaces. Our results show that the first step is the formation of the adsorbed formate (HCOO*) species through an Eley-Rideal mechanism. The formate species can be reduced to HCOO through a one-electron reduction in basic solution, which produces formic acid as the predominant product. The respective potentials of forming HCOO* are predicted to be −0.72 and −0.58 V on Pb and Sn. Higher overpotentials make other reaction pathways accessible, leading to different products. On Sn(112), CO and CH4 can be generated at −0.65 V following formate formation. In contrast, the limiting potential to access alternative reaction channels on Pb(211) is −1.33 V, significantly higher than that of Sn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Scibioh MA, Viswanathan B. Electrochemical reduction of carbon dioxide: a status report. Pro Indian Natn Sci Acad, 2004, 70: 407–462

    CAS  Google Scholar 

  2. D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed, 2010, 49: 6058–6082

    Article  Google Scholar 

  3. Hori Y. Electrochemical CO2 reduction on metal electrodes. In: Modern Aspects of Electrochemistry. Heidelberg: Springer, 2008. 89–189

    Chapter  Google Scholar 

  4. Qiao JL, Liu YY, Hong F, Zhang JJ. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev, 2014, 43: 631–675

    Article  CAS  Google Scholar 

  5. Jhong HR, Ma S, Kenis PJ. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng, 2013, 2: 191–199

    Article  Google Scholar 

  6. Lee J, Kwon Y, Machunda RL, Lee HJ. Electrocatalytic recycling of CO2 and small organic molecules. Chem Asian J, 2009, 4: 1516–1523

    Article  CAS  Google Scholar 

  7. Genovese C, Ampelli C, Perathoner S, Centi G. Electrocatalytic conversion of CO2 on carbon nanotube-based electrodes for producing solar fuels. J Catal, 2013, 308: 237–249

    Article  CAS  Google Scholar 

  8. Bernstein NJ, Akhade SA, Janik MJ. Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface. Phys Chem Chem Phys, 2014, 16: 13708–13717

    Article  CAS  Google Scholar 

  9. Friebel D, Mbuga F, Rajasekaran S, Miller DJ, Ogasawara H, Alonso-Mori R, Sokaras D, Nordlund D, Weng TC, Nilsson A. Structure, redox chemistry, and interfacial alloy formation in monolayer and multilayer Cu/Au(111) model catalysts for CO2 electro-reduction. J Phys Chem C, 2014, 118: 7954–7961

    Article  CAS  Google Scholar 

  10. Terunuma Y, Saitoh A, Momose Y. Relationship between hydro-carbon production in the electrochemical reduction of CO2 and the characteristics of the Cu electrode. J Electroanal Chem, 1997, 434: 69–75

    Article  CAS  Google Scholar 

  11. Goncalves M, Gomes A, Condeco J, Fernandes R, Pardal T, Sequeira C, Branco J. Selective electrochemical conversion of CO2 to C2 hydrocarbons. Energy Convers Manage, 2010, 51: 30–32

    Article  CAS  Google Scholar 

  12. Schouten KJP, Kwon Y, van der Ham CJM, Qin Z, Koper MTM. A new mechanism for the selectivity to C-1 and C-2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci, 2011, 2: 1902–1909

    Article  CAS  Google Scholar 

  13. Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc, Faraday Trans 1, 1989, 85: 2309–2326

    Article  CAS  Google Scholar 

  14. Hori Y, Koga O, Yamazaki H, Matsuo T. Infrared spectroscopy of adsorbed CO and intermediate species in electrochemical reduction of CO2 to hydrocarbons on a Cu electrode. Electrochimica Acta, 1995, 40: 2617–2622

    Article  CAS  Google Scholar 

  15. Hori Y, Takahashi I, Koga O, Hoshi N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B, 2002, 106: 15–17

    Article  CAS  Google Scholar 

  16. Hori Y, Konishi H, Futamura T, Murata A, Koga O, Sakurai H, Oguma K. “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochimica Acta, 2005, 50: 5354–5369

    Article  CAS  Google Scholar 

  17. Hirunsit P. Electroreduction of carbon dioxide to methane on copper, copper-silver, and copper-gold catalysts: a DFT study. J Phys Chem C, 2013, 117: 8262–8268

    Article  CAS  Google Scholar 

  18. Nie X, Esopi MR, Janik MJ, Asthagiri A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew Chem Int Ed, 2013, 52: 2459–2462

    Article  CAS  Google Scholar 

  19. Nie X, Luo W, Janik MJ, Asthagiri A. Reaction mechanisms of CO2 electrochemical reduction on Cu (111) determined with density functional theory. J Catal, 2014, 312: 108–122

    Article  CAS  Google Scholar 

  20. Durand WJ, Peterson AA, Studt F, Abild-Pedersen F, Nørskov JK. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf Sci, 2011, 605: 1354–1359

    Article  CAS  Google Scholar 

  21. Hansen HA, Montoya JH, Zhang YJ, Shi C, Peterson AA, Nørskov JK. Electroreduction of methanediol on copper. Catal Lett, 2013, 143: 631–635

    Article  CAS  Google Scholar 

  22. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energ Environ Sci, 2010, 3: 1311–1315

    Article  CAS  Google Scholar 

  23. Peterson AA, Nørskov JK. Activity descriptors for CO2 electro-reduction to methane on transition-metal catalysts. J Phys Chem Lett, 2012, 3: 251–258

    Article  CAS  Google Scholar 

  24. Innocent B, Pasquier D, Ropital F, Hahn F, Leger JM, Kokoh KB. FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium. Appl Catal B-Environ, 2010, 94: 219–224

    Article  CAS  Google Scholar 

  25. Kwon Y, Lee J. Formic acid from carbon dioxide on nanolayered electrocatalyst. Electrocatal, 2010, 1: 108–115

    Article  CAS  Google Scholar 

  26. Koleli F, Balun D. Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium. Appl Catal A-Gen, 2004, 274: 237–242

    Article  Google Scholar 

  27. Innocent B, Liaigre D, Pasquier D, Ropital F, Leger JM, Kokoh KB. Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. J Appl Electrochem, 2009, 39: 227–232

    Article  CAS  Google Scholar 

  28. Zhang S, Kang P, Meyer TJ. Nano-structured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc, 2014, 136: 1734–1737

    Article  CAS  Google Scholar 

  29. Lv W, Zhang R, Gao P, Lei L. Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J Power Sources, 2014, 253: 276–281

    Article  CAS  Google Scholar 

  30. Kaneco S, Iwao R, Iiba K, Ohta K, Mizuno T. Electrochemical conversion of carbon dioxide to formic acid on Pb in KOH/methanol electrolyte at ambient temperature and pressure. Energy, 1998, 23: 1107–1112

    Article  CAS  Google Scholar 

  31. Del Castillo A, Alvarez-Guerra M, Irabien A. Continuous electroreduction of CO2 to formate using Sn gas diffusion electrodes. AIChE J, 2014, 60: 3557–3564

    Article  Google Scholar 

  32. Grasemann M, Laurenczy G. Formic acid as a hydrogen source-recent developments and future trends. Energ Environ Sci, 2012, 5: 8171–8181

    Article  CAS  Google Scholar 

  33. Bumroongsakulsawat P, Kelsall GH. Effect of solution pH on CO: formate formation rates during electrochemical reduction of aqueous CO2 at Sn cathodes. Electrochimica Acta, 2014, 141: 216–225

    Article  CAS  Google Scholar 

  34. Li WZ. Electrocatalytic reduction of CO2 to small organic molecule fuels on metal catalysts. Chem Inform, 2012, 43: 55–76

    CAS  Google Scholar 

  35. Sullivan BP, Krist K, Guard H. Electrochemical and Electrocatalytic Reactions of Carbon Dioxide. Amsterdam: Elsevier, 1992

    Google Scholar 

  36. Koleli F, Atilan T, Palamut N, Gizir AM, Aydin R, Hamann CH. Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media. J Appl Electrochem, 2003, 33: 447–450

    Article  Google Scholar 

  37. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M. Universality in heterogeneous catalysis. J Catal, 2002, 209: 275–278

    Article  Google Scholar 

  38. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  39. King H. Crystal structures of the elements at 25 °C. J Phase Equilib, 1981, 2: 401–402

    Google Scholar 

  40. Craven JE. Band structure and fermi surface of white tin as derived from de Haas-van Alphen data. Phys Rev, 1969, 182: 693–702

    Article  CAS  Google Scholar 

  41. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B, 2004, 108: 17886–17892

    Article  Google Scholar 

  42. Calle-Vallejo F, Koper MTM. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed, 2013, 52: 7282–7285

    Article  CAS  Google Scholar 

  43. Cramer CJ. Essentials of computational chemistry: theories and models. Volume 9: charge distribution and spectroscopic properties. 2nd Ed. Weinheim: John Wiley & Sons, Ltd., 2004. 305–351

    Google Scholar 

  44. Hara K, Kudo A, Sakata T. Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte. J Electroanal Chem, 1995, 391: 141–147

    Article  Google Scholar 

  45. Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochimica Acta, 1994, 39: 1833–1839

    Article  CAS  Google Scholar 

  46. Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T. Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc, 1990, 137: 1772–1778

    Article  CAS  Google Scholar 

  47. Prakash GKS, Viva FA, Olah GA. Electrochemical reduction of CO2 over Sn-Nafion coated electrode for a fuel-cell-like device. J Power Sources, 2013, 223: 68–73

    Article  CAS  Google Scholar 

  48. Li H, Oloman C. The electro-reduction of carbon dioxide in a continuous reactor. J Appl Electrochem, 2005, 35: 955–965

    Article  CAS  Google Scholar 

  49. Wu JJ, Harris B, Sharma PP, Zhou XD. Morphological stability of Sn electrode for electrochemical conversion of CO2. ECS Trans, 2013, 58: 71–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Wang or Qingfeng Ge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Wang, H., Zhu, X. et al. A DFT study of CO2 electrochemical reduction on Pb(211) and Sn(112). Sci. China Chem. 58, 607–613 (2015). https://doi.org/10.1007/s11426-015-5323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5323-z

Keywords

Navigation