Skip to main content

N-phosphoryl amino acid models for P-N bonds in prebiotic chemical evolution

Abstract

Post-translational modification of proteins by N-phosphorylation of the basic amino acid residues plays important roles in biological processes. The high-energy P-N bond might have contributed to the evolution of prebiotic chemistry. N-phosphoryl amino acids (PAAs) can serve as interesting small molecular models for the study of P-N bonds in prebiotic chemical evolution. PAAs are capable of simultaneously producing several important biomolecules such as polypeptides and oligonucleotides under mild reaction conditions. In this review, we describe the chemistry of PAAs, discusse their likely prebiotic origins and their reactivity and how they relate to biological P-N bond species. We also depict a possible prebiotic scenario mediated by PAAs in which PAAs may have acted as one of the essential forces driving prebiotic biomolecules to the first protocell.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Derouiche A, Cousin C, Mijakovic I. Protein phosphorylation from the perspective of systems biology. Curr Opin Biotechnol, 2012, 23: 585–590

    Article  CAS  Google Scholar 

  2. 2

    Hunter T. Why nature chose phosphate to modify proteins. Phil Trans R Soc B, 2012, 367: 2513–2516

    Article  CAS  Google Scholar 

  3. 3

    Matthews HR. Protein-kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein-kinase cascade. Pharmacol Ther, 1995, 67: 323–350

    Article  CAS  Google Scholar 

  4. 4

    Ciesla J, Fraczyk T, Rode W. Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochim Pol, 2011, 58: 137–148

    CAS  Google Scholar 

  5. 5

    Zu XL. Wilson and Wilson’s Comprehensive Analytical Chemistry. Amsterdam: Elsevier, 1959

    Google Scholar 

  6. 6

    Loroch S, Dickhut C, Zahedi RP, Sickmann A. Phosphoproteomics: more than meets the eye. Electrophoresis, 2013, 34: 1483–1492

    Article  CAS  Google Scholar 

  7. 7

    Attwood PV, Piggott MJ, Zu XL, Besant PG. Focus on phosphohistidine. Amino Acids, 2007, 32: 145–156

    Article  CAS  Google Scholar 

  8. 8

    Serpi M, Bibbo R, Rat S, Roberts H, Hughes C, Caterson B, Jose Alcaraz M, Torrent Gibert A, Alaez Verson CR, McGuigan C. Novel phosphoramidate prodrugs of N-acetyl-(D)-glucosamine with antidegenerative activity on bovine and human cartilage explants. J Med Chem, 2012, 55: 4629–4639

    Article  CAS  Google Scholar 

  9. 9

    Reardon S. United States to approve potent oral drugs for hepatitis C. Nature, 2013, doi: 10.1038/nature.2013.14059

    Google Scholar 

  10. 10

    Cheng CM, Liu XH, Li YM, Ma Y, Tan B, Wan R, Zhao YF. N-phosphoryl amino acids and biomolecular origins. Orig Life Evol Biosph, 2004, 34: 455–464

    Article  CAS  Google Scholar 

  11. 11

    Gao X, Deng H, Tang G, Liu Y, Xu P, Zhao Y. Intermolecular phosphoryl transfer of N-phosphoryl amino acids. European J Org Chem, 2011: 3220–3228

    Google Scholar 

  12. 12

    Hess JF, Bourret RB, Simon MI. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature, 1988, 336: 139–143

    Article  CAS  Google Scholar 

  13. 13

    Swanson RV, Alex LA, Simon MI. Histidine and aspartate phosphorylation: 2. Component systems and the limits of homolog. Trends BiochemSci, 1994, 19: 485–490

    Article  CAS  Google Scholar 

  14. 14

    Smith DL, Bruegger BB, Halpern RM, Smith RA. New histone kinases in nuclei of rat tissues. Nature, 1973, 246: 103–104

    Article  Google Scholar 

  15. 15

    Besant PG, Attwood PV. Histone H4 histidine phosphorylation: kinases, phosphatases, liver regeneration and cancer. Biochem Soc Trans, 2012, 40: 290–293

    Article  CAS  Google Scholar 

  16. 16

    Crovello CS, Furie BC, Furie B. Histidine phosphorylation of P-selectin upon stimulation of human platelets: a novel pathway for activation-dependent signal transduction. Cell, 1995, 82: 279–286

    Article  CAS  Google Scholar 

  17. 17

    Besant PG, Attwood PV, Piggott MJ. Focus on phosphoarginine and phospholysine. Curr Protein Pept Sci, 2009, 10: 536–550

    Article  CAS  Google Scholar 

  18. 18

    Boyer PD, Deluca M, Ebner KE, Hultquist DE, Peter JB. Identification of phosphohistidine in digests from a probable intermediate of oxidative phosphorylation. J Biol Chem, 1962, 237: PC3306–PC3308

    CAS  Google Scholar 

  19. 19

    Ek P, Pettersson G, Ek B, Gong F, Li JP, Zetterqvist O. Identification and characterization of a mammalian 14-kDa phosphohistidine phosphatase. Eur J Biochem, 2002, 269: 5016–5023

    Article  CAS  Google Scholar 

  20. 20

    Munoz-Dorado J, Almaula N, Inouye S, Inouye M. Autophosphorylation of nucleoside diphosphate kinase from Myxococcus xanthus. J Bacteriol, 1993, 175: 1176–1181

    CAS  Google Scholar 

  21. 21

    Wieland T, Nurnberg B, Ulibarri I, Kaldenbergstasch S, Schultz G, Jakobs KH. Guanine nucleotide-specific phosphate transfer by guanine-nucleotide-binding regulatory protein beta-subunits: characterization of the phosphorylated amino-acid. J Biol Chem, 1993, 268: 18111–18118

    CAS  Google Scholar 

  22. 22

    Kowluru A, Seavey SE, Rhodes CJ, Metz SA. A novel regulatory mechanism for trimeric GTP-binding proteins in the membrane and secretory granule fractions or human and rodent beta cells. Biochem J, 1996, 313: 97–107

    CAS  Google Scholar 

  23. 23

    Cuello F, Schulze RA, Heemeyer F, Meyer HE, Lutz S, Jakobs KH, Niroomand F, Wieland T. Activation of heterotrimeric G proteins by a high energy phosphate transfer via nucleoside diphosphate kinase (NDPK) B and Gbeta subunits. Complex formation of NDPK B with Gbeta gamma dimers and phosphorylation of His-266 IN Gbeta. J Biol Chem, 2003, 278: 7220–7226

    Article  CAS  Google Scholar 

  24. 24

    Maurer A, Wieland T, Meissl F, Niroomand F, Mehringer R, Krieglstein J, Klumpp S. The beta-subunit of G proteins is a substrate of protein histidine phosphatase. Biochem Biophys Res Commun, 2005, 334: 1115–1120

    Article  Google Scholar 

  25. 25

    Hippe HJ, Lutz S, Cuello F, Knorr K, Vogt A, Jakobs KH, Wieland T, Niroomand F. Activation of heterotrimeric G proteins by a high energy phosphate transfer via nucleoside diphosphate kinase (NDPK) B and Gbeta subunits. Specific activation of Gsalpha by an NDPK B.Gbetagamma complex in H10 cells. J Biol Chem, 2003, 278: 7227–7233

    Article  CAS  Google Scholar 

  26. 26

    Wagner PD, Vu ND. Phosphorylation of ATP-citrate lyase by nucleoside diphosphate kinase. J Biol Chem, 1995, 270: 21758–21764

    Article  CAS  Google Scholar 

  27. 27

    Wagner PD, Steeg PS, Vu ND. Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc Natl Acad Sci USA, 1997, 94: 9000–9005

    Article  CAS  Google Scholar 

  28. 28

    Klumpp S, Bechmann G, Maurer A, Selke D, Krieglstein J. ATP-citrate lyase as a substrate of protein histidine phosphatase in vertebrates. Biochem Biophys Res Commun, 2003, 306: 110–115

    Article  CAS  Google Scholar 

  29. 29

    Krieglstein J, Lehmann M, Maurer A, Gudermann T, Pinkenburg O, Wieland T, Litterscheid S, Klumpp S. Reduced viability of neuronal cells after overexpression of protein histidine phosphatase. Neurochem Int, 2008, 53: 132–136

    Article  CAS  Google Scholar 

  30. 30

    Srivastava S, Li Z, Ko K, Choudhury P, Albaqumi M, Johnson AK, Yan Y, Backer JM, Unutmaz D, Coetzee WA, Skolnik EY. Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Molecular Cell, 2006, 24: 665–675

    Article  CAS  Google Scholar 

  31. 31

    Srivastava S, Zhdanova O, Di L, Li Z, Albaqumi M, Wulff H, Skolnik EY. Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K+ channel KCa3.1. Proc Natl Acad Sci USA, 2008, 105: 14442–14446

    Article  CAS  Google Scholar 

  32. 32

    Freiman RN, Tjian R. Regulating the regulators: lysine modifications make their mark. Cell, 2003, 112: 11–17

    Article  CAS  Google Scholar 

  33. 33

    Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. Biochimica et Biophysica Acta, 2009, 1789: 45–57

    Article  CAS  Google Scholar 

  34. 34

    Hofmann FT, Lindemann C, Salia H, Adamitzki P, Karanicolas J, Seebeck FP. A phosphoarginine containing peptide as an artificial SH2 ligand. Chem Commun (Camb), 2011, 47: 10335–10337

    Article  CAS  Google Scholar 

  35. 35

    Bertran-Vicente J, Serwa RA, Schumann M, Schmieder P, Krause E, Hackenberger CP. Site-specifically phosphorylated lysine peptides. J Am Chem Soc, 2014, 136: 13622–13628

    Article  CAS  Google Scholar 

  36. 36

    Wakim BT, Aswad GD. Ca2+-calmodulin-dependent phosphorylation of arginine in histone-3 by a nuclear kinase from mouse leukemia-cells. J Biol Chem, 1994, 269: 2722–2727

    CAS  Google Scholar 

  37. 37

    Fuhrmann J, Schmidt A, Spiess S, Lehner A, Turgay K, Mechtler K, Charpentier E, Clausen T. McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science, 2009, 324: 1323–1327

    Article  CAS  Google Scholar 

  38. 38

    Wilson ME, Consigli RA. Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology, 1985, 143: 516–525

    Article  CAS  Google Scholar 

  39. 39

    Sikorska M, Whitfield JF. Isolation and purification of a new 105 kDa protein kinase from rat liver nuclei. Biochim Biophys Acta, 1982, 703: 171–179

    Article  CAS  Google Scholar 

  40. 40

    Levy-Favatier F, Delpech M, Kruh J. Characterization of an arginine-specific protein kinase tightly bound to rat liver DNA. Eur J Biochem, 1987, 166: 617–621

    Article  CAS  Google Scholar 

  41. 41

    Zetterqvist O, Engstrom L. Isolation of N-e-32P phosphoryl-lysine from rat-liver cell sap after incubation with 32P adenosine triphosphate. BBA, 1967, 141: 523–532

    CAS  Google Scholar 

  42. 42

    Chen CC, Smith DL, Bruegger BB, Halpern RM, Smith RA. Occurrence and distribution of acid-labile histone phosphates in regenerating rat liver. Biochemistry, 1974, 13: 3785–3789

    Article  CAS  Google Scholar 

  43. 43

    Chen CC, Bruegger BB, Kern CW, Lin YC, Halpern RM, Smith RA. Phosphorylation of nuclear proteins in rat regenerating liver. Biochemistry, 1977, 16: 4852–4855

    Article  CAS  Google Scholar 

  44. 44

    Fazekas S, Hutas I, Ovary I, Szekessy-Heymann V. Presence of covalently bound energy-rich phosphates in human tracheal smooth muscle myosin. Acta Physiol Hung, 1987, 70: 385–395

    CAS  Google Scholar 

  45. 45

    Zaia DAM, Zaia CTBV, De Santana H. Which amino acids should be used in prebiotic chemistry studies? Origins Life Evol B, 2008, 38: 469–488

    Article  CAS  Google Scholar 

  46. 46

    Miller SL. A production of amino acids under possible primitive earth conditions. Science, 1953, 117: 528–529

    Article  CAS  Google Scholar 

  47. 47

    Westheimer FH. Why nature chose phosphates. Science, 1987, 235: 1173–1178

    Article  CAS  Google Scholar 

  48. 48

    Bowler MW, Cliff MJ, Waltho JP, Blackburn GM. Why did nature select phosphate for its dominant roles in biology? New J Chem, 2010, 34: 784–794

    Article  CAS  Google Scholar 

  49. 49

    Schwartz AW. Phosphorus in prebiotic chemistry. Phil Trans R Soc B, 2006, 361: 1743–1749

    Article  CAS  Google Scholar 

  50. 50

    Todd AR. Where there’s Life there’s Phosphorus. Tokyo: Japan Sci Soc Press, 1981

    Google Scholar 

  51. 51

    Duve DC. Blueprint for a Cell: the nature and origin of life. Burlington, NC: N. Patterson, 1991

    Google Scholar 

  52. 52

    Gulick A. Phosphorus as a factor in the origin of life. Am Scientist, 1955, 43: 479–489

    CAS  Google Scholar 

  53. 53

    Keefe AD, Miller SL. Are polyphosphates or phosphate esters prebiotic reagents? J Mol Evol, 1995, 41: 693–702

    Article  CAS  Google Scholar 

  54. 54

    Pasek MA. Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci USA, 2008, 105: 853–858

    Article  CAS  Google Scholar 

  55. 55

    Adcock CT, Hausrath EM, Forster PM. Readily available phosphate from minerals in early aqueous environments on Mars. Nature Geosci, 2013, 6: 824–827

    Article  CAS  Google Scholar 

  56. 56

    Yamagata Y, Watanabe H, Saitoh M, Namba T. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature, 1991, 352: 516–519

    Article  CAS  Google Scholar 

  57. 57

    Krishnamurthy R, Arrhenius G, Eschenmoser A. Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution. Orig Life Evol Biosph, 1999, 29: 333–354

    Article  CAS  Google Scholar 

  58. 58

    Mullen LB, Sutherland JD. Formation of potentially prebiotic amphiphiles by reaction of beta-hydroxy-n-alkylamines with cyclotriphosphate. Angew Chem Int Ed, 2007, 46: 4166–4168

    Article  CAS  Google Scholar 

  59. 59

    Ni F, Sun S, Huang C, Zhao Y. N-phosphorylation of amino acids by trimetaphosphate in aqueous solution-learning from prebiotic synthesis. Green Chem, 2009, 11: 569–573

    Article  CAS  Google Scholar 

  60. 60

    Rabinowitz J, Flores J, Kresbach R, Rogers G. Peptide formation in the presence of linear or cyclic polyphosphates. Nature, 1969, 224: 795–796

    Article  CAS  Google Scholar 

  61. 61

    Ni F, Gao X, Zhao ZX, Huang C, Zhao YF. On the electrophilicity of cyclic acylphosphoramidates (CAPAs) postulated as intermediates. European J Org Chem, 2009: 3026–3035

    Google Scholar 

  62. 62

    Gao X, Ni F, Bao J, Liu Y, Zhang Z, Xu P, Zhao Y. Formation of cyclic acylphosphoramidates in mass spectra of N-monoalkyloxyphosphoryl amino acids using electrospray ionization tandem mass spectrometry. J Mass Spectrom, 2010, 45: 779–787

    Article  CAS  Google Scholar 

  63. 63

    Li YM, Yin YW, Zhao YF. Phosphoryl group participation leads to peptide formation from n-phosphorylamino acids. Int J Pept Protein Res, 1992, 39: 375–381

    Article  CAS  Google Scholar 

  64. 64

    Ma XB, Zhao YF. Phosphoryl group participation in the reactions of n-phosphoryldipeptide acids. Phosphorus Sulfur Silicon Relat Elem, 1992, 66: 107–114

    Article  CAS  Google Scholar 

  65. 65

    Li YM, Zhao YF. The bioorganic chemical-reactions of n-phospho-amino acids without side-chain functional-group participated by phosphoryl group. Phosphorus Sulfur Silicon Relat Elem, 1993, 78: 15–21

    Article  CAS  Google Scholar 

  66. 66

    Xue CB, Yin YW, Zhao YF. Studies on phosphoserine and phosphothreonine derivatives-n-diisopropyloxyphosphoryl-serine and n-diisopropyloxyphosphoryl-threonine in alcoholic media. Tetrahedron Lett, 1988, 29: 1145–1148

    Article  CAS  Google Scholar 

  67. 67

    Yang HJ, Jian L, Zhao YF. N-S phosphoryl migration in phosphoryl glutathione. Int J Pept Protein Res, 1993, 42: 39–43

    CAS  Google Scholar 

  68. 68

    Zhou WH, Ju Y, Zhao YF, Wang QG, Luo GA. Simultaneous formation of peptides and nucleotides from N-phosphothreonine. Orig Life Evol Biosph, 1996, 26: 547–560

    Article  CAS  Google Scholar 

  69. 69

    Zhao YF, Cao PS. Phosphoryl amino-acids-common origin for nucleic-acids and protein. J Biol Phys, 1994, 20: 283–287

    Article  CAS  Google Scholar 

  70. 70

    Fu H, Li ZL, Zhao YF, Tu GZ. Oligomerization of N,O-bis(trime-thylsilyl)-alpha-amino acids into peptides mediated by o-phenylene phosphorochloridate. J Am Chem Soc, 1999, 121: 291–295

    Article  CAS  Google Scholar 

  71. 71

    Hou JB, Zhang H, Guo JN, Liu Y, Xu PX, Zhao YF, Blackburn GM. Chirality at phosphorus in pentacoordinate spirophosphoranes: stereochemistry by X-ray structure and spectroscopic analysis. Org Biomol Chem, 2009, 7: 3020–3023

    Article  CAS  Google Scholar 

  72. 72

    Zeng ZP, Hou JB, Zhang H, Zhao YF. New feature in the chiral bisamino acyl pentacoordinate spirophosphoranes. Scientia Sinica Chimica, 2010, 7: 878–887

    Google Scholar 

  73. 73

    Gao X, Liu Y, Xu PX, Cai YM, Zhao YF. Alpha-amino acid behaves differently from beta- or gamma-amino acids as treated by trimetaphosphate. Amino Acids, 2008, 34: 47–53

    Article  CAS  Google Scholar 

  74. 74

    Chen ZZ, Tan B, Li YM, Zhao YF, Tong YF, Wang JF. Activity difference between alpha-COOH and beta-COOH in N-phosphory-laspartic acids. J Org Chem, 2003, 68: 4052–4058

    Article  CAS  Google Scholar 

  75. 75

    Chen ZZ, Li YM, Ma J, Tan B, Inagaki S, Zhao YF. Activities of alpha-COOH vs gamma-COOH in N-phosphoryl amino acids: a theoretical study. J Phys Chem A, 2002, 106: 11565–11569

    Article  CAS  Google Scholar 

  76. 76

    Lightstone FC, Bruice TC. Ground state conformations and entropic and enthalpic factors in the efficiency of intramolecular and enzymatic reactions. 1. Cyclic anhydride formation by substituted glutarates, succinate, and 3,6-endoxo-delta(4)-tetrahydrophthalate monophenyl esters. J Am Chem Soc, 1996, 118: 2595–2605

    Article  CAS  Google Scholar 

  77. 77

    Xiao X, Zhang Y. Life in extreme environments: approaches to study life-environment co-evolutionary strategies. Sci China Earth Sci, 2014, 57: 869–877

    Article  Google Scholar 

  78. 78

    Liu Y. Seryl-histidine dipeptide: an original molecule evolutionary model of modern protease. Scientia Sinica Chimica, 2011, 41: 579–586

    Article  CAS  Google Scholar 

  79. 79

    Han DX, Wang HY, Ji ZL, Hu AF, Zhao YF. Amino acid homochirality may be linked to the origin of phosphate-based life. J Mol Evol, 2010, 70: 572–582

    Article  CAS  Google Scholar 

  80. 80

    Han D, Chen W, Han B, Zhao Y. A new theoretical model for the origin of amino acid homochirality. Sci China Ser C-Life Sci, 2007, 50: 580–586

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yufen Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ni, F., Fu, C., Gao, X. et al. N-phosphoryl amino acid models for P-N bonds in prebiotic chemical evolution. Sci. China Chem. 58, 374–382 (2015). https://doi.org/10.1007/s11426-015-5321-1

Download citation

Keywords

  • N-phosphoryl amino acid
  • biological P-N bond
  • chemical evolution
  • origin of life