Skip to main content
Log in

Surface plasmon-enhanced photochemical reactions on noble metal nanostructures

  • Feature Articles
  • Special Issue Heterogeneous Catalysis Theory
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nanoscale noble metals can exhibit excellent photochemical and photophysical properties, due to surface plasmon resonance (SPR) from specifically collective electronic excitations on these metal surfaces. The SPR effect triggers many new surface processes, including radiation and radiationless relaxations. As for the radiation process, the SPR effect causes the significant focus of light and enormous enhancement of the local surface optical electric field, as observed in surface-enhanced Raman spectroscopy (SERS) with very high detection sensitivity (to the single-molecule level). SERS is used to identify surface species and characterize molecular structures and chemical reactions. For the radiationless process, the SPR effect can generate hot carriers, such as hot electrons and hot holes, which can induce and enhance surface chemical reactions. Here, we review our recent work and related literature on surface catalytic-coupling reactions of aromatic amines and aromatic nitro compounds on nanostructured noble metal surfaces. Such reactions are a type of novel surface plasmon-enhanced chemical reaction. They could be simultaneously characterized by SERS when the SERS signals are assigned. By combining the density functional theory (DFT) calculations and SERS experimental spectra, our results indicate the possible pathways of the surface plasmon-enhanced photochemical reactions on nanostructures of noble metals. To construct a stable and sustainable system in the conversion process of the light energy to the chemical energy on nanoscale metal surfaces, it is necessary to simultaneously consider the hot electrons and the hot holes as a whole chemical reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hutchings GJ. Catalysis by Gold. Singapore: Imperial College Press, 2006

    Google Scholar 

  2. Parker JF, Fields-Zinna CA, Murray RW. The story of a monodisperse gold nanoparticle: Au25L18. Accounts Chem Res, 2010, 43: 1289–1296

    Article  CAS  Google Scholar 

  3. Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys, 1985, 57: 783–826

    Article  CAS  Google Scholar 

  4. Tian ZQ, Ren B, Wu DY. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B, 2002, 106: 9463–9483

    Article  CAS  Google Scholar 

  5. Le Ru EC, Etchegoin PG. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Amsterdam: Elsevier, 2009

    Google Scholar 

  6. Johnson PR, Christy RW. Optical constants of the noble metals. Phys Rev B, 1972, 6: 4370–4379

    Article  CAS  Google Scholar 

  7. Manjavacas A, Liu JG, Kulkarni V, Nordlander P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 2014, 8: 7630–7638

    Article  CAS  Google Scholar 

  8. Xiao M, Jiang R, Wang F, Fang C, Wang J, Yu JC. Plasmon-enhanced chemical reactions. J Mater Chem A, 2013, 1: 5790–5805

    Article  CAS  Google Scholar 

  9. Baffou G, Quidant R. Nanoplasmonics for chemistry. Chem Soc Rev, 2014, 43: 3898–3910

    Article  CAS  Google Scholar 

  10. Menzel D. Electronically induced surface reactions: evolution, concepts, and perspectives. J Chem Phys, 2012, 137: 091702

    Article  Google Scholar 

  11. Govorov AO, Zhang H, Gun’ko YK. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J Phys Chem C, 2013, 117: 16616–16631

    Article  CAS  Google Scholar 

  12. Christopher P, Xin H, Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem, 2011, 3: 467–472

    CAS  Google Scholar 

  13. Zhao LB, Zhang M, Huang YF, Williams CT, Wu DY, Ren B, Tian ZQ. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds. J Phys Chem Lett, 2014, 5: 1259–1266

    Article  CAS  Google Scholar 

  14. Tian ZQ, Ren B, Li JF, Yang ZL. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun, 2007: 3514–3534

    Google Scholar 

  15. Wu DY, Li JF, Ren B, Tian ZQ. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev, 2008, 37: 1025–1041

    Article  CAS  Google Scholar 

  16. Gray SK. Surface plasmon-enhanced spectroscopy and photochemistry. Plasmonics, 2007, 2: 143–146

    Article  CAS  Google Scholar 

  17. Huang YF, Wu DY, Zhu HP, Zhao LB, Liu GK, Ren B, Tian ZQ. Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Phys Chem Chem Phys, 2012, 14: 8485–8497

    Article  CAS  Google Scholar 

  18. Kreibig U, Vollmer M. Optical Properties of Metal Clusters. Springer: Berlin, 1995

    Google Scholar 

  19. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander JRW, Ward CA. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Optics, 1983, 22: 1099–1120

    Article  CAS  Google Scholar 

  20. Watanabe K, Menzel D, Nilius N, Freund HJ. Photochemistry on metal nanoparticles. Chem Rev, 2006, 106: 4301–4320

    Article  CAS  Google Scholar 

  21. Chulkov EV, Borisov AG, Gauyacq JP, Sanchez-Portal D, Silkin VM, Zhukov VP, Echenique PM. Electronic excitations in metals and at metal surfaces. Chem Rev, 2006, 106: 4160–4206

    Article  CAS  Google Scholar 

  22. Kerker M, Wang DS, Chew H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl Optics, 1980, 19: 4159–4174

    Article  CAS  Google Scholar 

  23. Pinchuk A, Kreibig U. Interface decay channel of particle surface plasmon resonance. New J Phys, 2003, 5: 151

    Article  Google Scholar 

  24. Xu HX, Aizpurua J, Kall M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E, 2000, 62: 4318–4324

    Article  CAS  Google Scholar 

  25. Alvarez-Puebla R, Liz-Marzan LM, de Abajo FJG. Light concentration at the nanometer scale. J Phys Chem Lett, 2010, 1: 2428–2434

    Article  CAS  Google Scholar 

  26. Ueno K, Misawa H. Surface plasmon-enhanced photochemical reactions. J Photochem Photobio C: Photochem Rev, 2013, 15: 31–52

    Article  CAS  Google Scholar 

  27. Zhukovsky SV, Babicheva VE, Uskov AV, Protsenko IE, Lavrinenko AV. Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells. Plasmonics, 2014, 9: 283–289

    Article  CAS  Google Scholar 

  28. Govorov AO, Zhang H, Demir HV, Gun’ko YK. Photogeneration of hot plasmonic electrons wit metal nanocrystals: quantum description and potential applications. Nano Today, 2014, 9: 85–101

    Article  CAS  Google Scholar 

  29. Diesing D, Kritzler G, Stermann M, Nolting D, Otto A. Metal/insulator/metal junctions for electrochemical surface science. J Solid State Electrochem, 2003, 7: 389–415

    Article  CAS  Google Scholar 

  30. Schuck PJ. Hot electrons go through the barrier. Nature Nanotech, 2013, 8: 799–800

    Article  CAS  Google Scholar 

  31. Zhao LB, Huang YF, Liu XM, Anema JR, Wu DY, Ren B, Tian ZQ. A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline. Phys Chem Chem Phys, 2012, 14: 12919–12929

    Article  CAS  Google Scholar 

  32. Wu DY, Liu XM, Huang YF, Ren B, Xu X, Tian ZQ. Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement: a DFT study. J Phys Chem C, 2009, 113: 18212–18222

    Article  CAS  Google Scholar 

  33. Hill W, Wehling B. Potential-dependent and pH-dependent surface-enhanced Raman-scattering of p-mercaptoaniline on silver and gold substrates. J Phys Chem, 1993, 97: 9451–9455

    Article  CAS  Google Scholar 

  34. Osawa M, Matsuda N, Yoshii K, Uchida I. Charge-transfer resonance process in surface-enhanced Raman-scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem, 1994, 98: 12702–12707

    Article  CAS  Google Scholar 

  35. Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerner WE. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J Chem Phys, 2006, 124: 61101

    Article  Google Scholar 

  36. Zhou Q, Li XW, Fan Q, Zhang XX, Zheng JW. Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface-enhanced Raman spectroscopy. Angew Chem Int Ed, 2006, 45: 3970–3973

    Article  CAS  Google Scholar 

  37. Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett, 1974, 26: 163–166

    Article  CAS  Google Scholar 

  38. Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectro-chemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem, 1977, 84: 1–20

    Article  CAS  Google Scholar 

  39. Albrecht MGC, Alan J. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc, 1977, 99: 5215–5217

    Article  CAS  Google Scholar 

  40. Gao P, Gosztola D, Weaver MJ. Surface-enhanced Raman-spectroscopy as a probe of electroorganic reaction pathways. 1. Processes involving adsorbed nitrobenzene, azobenzene, and related species. J Phys Chem, 1988, 92: 7122–7130

    Article  CAS  Google Scholar 

  41. Funtikov AM, Sigalaev SK, Kazarinov VE. Surface enhanced Raman scattering and local photoemission currents on the freshly prepared surface of a silver electrode. J Electroanal Chem, 1987, 228: 197–218

    Article  CAS  Google Scholar 

  42. Gao P, Weaver MJ. Surface-enhanced Raman-spectroscopy as a vibrational probe of electrochemical reaction-mechanisms: the electroreduction of nitrobenzene. J Electrochem Soc, 1987, 134: C132–C132

    Article  Google Scholar 

  43. Sun S, Birke RL, Lombardi JR. Photolysis of p-nitrobenzoic acid on roughened silver surfaces. J Phys Chem, 1988, 92: 5965–5972

    Article  CAS  Google Scholar 

  44. Shi C, Zhang W, Birke RL, Gosser JDK, Lombardi JR. Time-resolved SERS, cyclic voltammetry, and digital simulation of the electroreduction of p-nitrobenzoic acid. J Phys Chem, 1991, 95: 6276–6285

    Article  CAS  Google Scholar 

  45. Park H, Lee SB, Kim K, Kim MS. Surface-enhanced Raman scattering of p-aminobenzoic acid at Ag electrode. J Phys Chem, 1990, 94: 7576–7580

    Article  CAS  Google Scholar 

  46. Matsuda N, Yoshii K, Ataka K, Osawa M, Matsue T, Uchida I. Surface-enhanced infrared and Raman studies of electrochemical reduction of self-assembled monolayers formed from paranitrohiophenol at silver. Chem Lett, 1992: 1385–1388

    Google Scholar 

  47. Kim K, Kim KL, Lee HB, Shin KS. Similarity and dissimilarity in surface-enhanced Raman scattering of 4-Aminobenzenethiol, 4,4′-dimercaptoazobenzene, and 4,4′-dimercaptohydrazobenzene on Ag. J Phys Chem C, 2012, 116: 11635–11642

    Article  CAS  Google Scholar 

  48. Kim K, Lee HB, Shin D, Ryoo H, Lee JW, Shin KS. Surface-enhanced Raman scattering of 4-aminobenzenethiol on silver: confirmation of the origin of b 2-type bands. J Raman Spectrosc, 2011, 42: 2112–2118

    Article  CAS  Google Scholar 

  49. Shin KS, Cho YK, Kim K. Surface-enhanced Raman scattering characteristics of 4-nitrobenzenethiol adsorbed on palladium and silver thin films. Vib Spectrosc, 2014, 70: 120–124

    Article  CAS  Google Scholar 

  50. Zhao LB, Huang R, Bai MX, Wu DY, Tian ZQ. Effect of aromatic amine-metal interaction on surface vibrational Raman spectroscopy of adsorbed molecules investigated by density functional theory. J Phys Chem C, 2011, 115: 4174–4183

    Article  CAS  Google Scholar 

  51. Zhao LB, Huang R, Huang YF, Wu DY, Ren B, Tian ZQ. Photon-driven charge transfer and Herzberg-Teller vibronic coupling mechanism in surface-enhanced Raman scattering of p-aminothiophenol adsorbed on coinage metal surfaces: a density functional theory study. J Chem Phys, 2011, 135: 134707

    Article  Google Scholar 

  52. Wu DY, Zhao LB, Liu XM, Huang R, Huang YF, Ren B, Tian ZQ. Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS. Chem Commun, 2011, 47: 2520–2522

    Article  CAS  Google Scholar 

  53. Gibson JW, Johnson BR. Density-matrix calculation of surface-enhanced Raman scattering for p-mercaptoaniline on silver nanoshells. J Chem Phys, 2006, 124: 064701

    Article  Google Scholar 

  54. Sun MT, Xu HX. Direct visualization of the chemical mechanism in SERRS of 4-aminothiophenol/metal complexes and metal/4-aminothiophenol/metal junctions. ChemPhysChem, 2009, 10: 392–399

    Article  CAS  Google Scholar 

  55. Lombardi JR, Birke RL, Lu T, Xu J. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J Chem Phys, 1986, 84: 4174–4180

    Article  CAS  Google Scholar 

  56. Albrecht AC. On the theory of Raman intensities. J Chem Phys, 1961, 34: 1476–1484

    Article  CAS  Google Scholar 

  57. Kambhampati P, Child CM, Foster MC, Campion A. On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. J Chem Phys, 1998, 108: 5013–5026

    Article  CAS  Google Scholar 

  58. Hayes WA, Shannon C. Electrochemistry of surface-confined mixed monolayers of 4-aminothiophenol and thiophenol on Au. Langmuir, 1996, 12: 3688–3694

    Article  CAS  Google Scholar 

  59. Raj CR, Kitamura F, Ohsaka T. Electrochemical and in situ FTIR spectroscopic investigation on the electrochemical transformation of 4-aminothiophenol on a gold electrode in neutral solution. Langmuir, 2001, 17: 7378–7386

    Article  CAS  Google Scholar 

  60. Lu Y, Xue G. Study of surface catalytic photochemical reaction by using conventional and Fourier transform surface enhanced Raman scattering. Appl Surf Sci, 1998, 125: 157–162

    Article  CAS  Google Scholar 

  61. Patrito EM, Cometto FP, Paredes-Olivera P. Quantum mechanical investigation of thiourea adsorption on Ag(111) considering electric field and solvent effects. J Phys Chem B, 2004, 108: 15755–15769

    Article  CAS  Google Scholar 

  62. Yang XM, Tryk DA, Ajito K, Hashimoto K, Fujishima A. Surface-enhanced Raman scattering imaging of photopatterned self-assembled monolayers. Langmuir, 1996, 12: 5525–5527

    Article  CAS  Google Scholar 

  63. Yang XM, Tryk DA, Hashimoto K, Fujishima A. Surface-enhanced Raman imaging (SERI) as a technique for imaging molecular monolayers with chemical selectivity under ambient conditions. J Raman Spectrosc, 1998, 29: 725–732

    Article  CAS  Google Scholar 

  64. Yang XM, Tryk DA, Hashimoto K, Fujishima A. Examination of the photoreaction of p-nitrobenzoic acid on electrochemically roughened silver using surface-enhanced Raman imaging (SERI). J Phys Chem B, 1998, 102: 4933–4943

    Article  CAS  Google Scholar 

  65. Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc, 2010, 132: 9244–9246

    Article  CAS  Google Scholar 

  66. Fang Y, Li Y, Xu H, Sun M. Ascertaining p,p′-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir, 2010, 26: 7737–7746

    Article  CAS  Google Scholar 

  67. Huang Y, Fang Y, Yang Z, Sun M. Can p,p′-dimercapto-azobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film? J Phys Chem C, 2010, 114: 18263–18269

    Article  CAS  Google Scholar 

  68. Tsuji T, Takashima H, Takeuchi H, Egawa T, Konaka S. Molecular structure and torsional potential of trans-azobenzene. A gas electron diffraction study. J Phys Chem A, 2001, 105: 9347–9353

    Article  CAS  Google Scholar 

  69. Briquet L, Vercauteren DP, Perpete EA, Jacquemin D. Is solvated trans-azobenzene twisted or planar? Chem Phys Lett, 2006, 417: 190–195

    Article  CAS  Google Scholar 

  70. Duan S, Ai YJ, Hu W, Luo Y. Roles of plasmonic excitation and protonation on photoreactions of p-aminobenzenethiol on Ag nanoparticles. J Phys Chem C, 2014, 118: 6893–6902

    Article  CAS  Google Scholar 

  71. Kim K, Kim KL, Shin KS. Photoreduction of 4,4′-dimercap-toazobenzene on Ag revealed by Raman scattering spectroscopy. Langmuir, 2013, 29: 183–190

    Article  CAS  Google Scholar 

  72. Kim K, Choi JY, Shin KS. Surface-enhanced Raman scattering of 4-nitrobenzenethiol and 4-aminobenzenethiol on silver in icy environments at liquid nitrogen temperature. J Phys Chem C, 2014, 118: 11397–11403

    Article  CAS  Google Scholar 

  73. Huang YF, Zhang M, Zhao LB, Feng JM, Wu DY, Ren B, Tian ZQ. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew Chem Int Ed, 2014, 53: 2353–2357

    Article  CAS  Google Scholar 

  74. Lund H. Cathodic reduction of nitro and related compounds. In: Lund H, Hammerich O, Eds. Organic Electrochemistry. 4 Ed. New York: Marcel Dekker, Inc., 2001. 379–409

    Google Scholar 

  75. Grirrane A, Corma A, Garcia H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science, 2008, 322: 1661–1664

    Article  CAS  Google Scholar 

  76. Zhu H, Ke X, Yang X, Sarina S, Liu H. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew Chem Int Ed, 2010, 49: 9657–9661

    Article  CAS  Google Scholar 

  77. Kang L, Xu P, Zhang B, Tsai H, Han X, Wang HL. Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. Chem Commun, 2013, 49: 3389–3391

    Article  CAS  Google Scholar 

  78. Kim HJ, Yoon JH, Yoon S. Photooxidative coupling of thiophenol derivatives to disulfides. J Phys Chem A, 2010, 114: 12010–12015

    Article  CAS  Google Scholar 

  79. Sun M, Xu H. A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small, 2012, 8: 2777–2786

    Article  CAS  Google Scholar 

  80. Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem Soc Rev, 1998, 27: 241–250

    Article  CAS  Google Scholar 

  81. Goldmann A, Matzdorf R, Theilmann F. Experimental hot-electron and photohole lifetimes at metal surfaces: what do we know? Surf Sci, 1998, 414: L932–L937

    Article  CAS  Google Scholar 

  82. Zhukov VP, Aryaseitiawan F, Chulkov EV, de Gurtubay IG, Echenique PM. Corrected local-density approximation band structures, linear-response dielectric functions, and quasiparticle lifetimes in noble metals. Phys Rev B, 2001, 64: 195122

    Article  Google Scholar 

  83. Knoesel E, Hotzel A, Wolf M. Ultrafast dynamics of hot electrons and holes in copper: excitation, energy relaxation, and transport effects. Phys Rev B, 1998, 57: 12812–12824

    Article  CAS  Google Scholar 

  84. Brus L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Accounts Chem Res, 2008, 41: 1742–1749

    Article  CAS  Google Scholar 

  85. Lindstrom CD, Zhu XY. Photoinduced electron transfer at molecule-metal interfaces. Chem Rev, 2006, 106: 4281–4300

    Article  CAS  Google Scholar 

  86. Huang YZ, Dong B. pH dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-amino-thiophenol and 4-nitrobenzenethiol. Sci China Chem, 2012, 55: 2567–2572

    Article  CAS  Google Scholar 

  87. Pang R, Yu LJ, Wu DY, Mao BW, Tian ZQ. Surface electron-hydronium ion-pair bound to silver and gold cathodes: a density functional theoretical study of photocatalytic hydrogen evolution reactions. Electrochim Acta, 2013, 101: 272–278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-Yin Wu or Bin Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, DY., Zhang, M., Zhao, LB. et al. Surface plasmon-enhanced photochemical reactions on noble metal nanostructures. Sci. China Chem. 58, 574–585 (2015). https://doi.org/10.1007/s11426-015-5316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5316-y

Keywords

Navigation