Skip to main content
Log in

Fast growth of graphene on SiO2/Si substrates by atmospheric pressure chemical vapor deposition with floating metal catalysts

  • Articles
  • SPECIAL TOPIC · Molecular Functional Materials and Applications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Graphene on dielectric substrates is essential for its electronic applications. Graphene is typically synthesized on the surface of metal and then transferred to an appropriate substrate for fabricating device applications. This post growth transfer process is detrimental to the quality and performance of the as-grown graphene. Therefore, direct growth of graphene films on dielectric substrates without any transfer process is highly desirable. However, fast growth of graphene on dielectric substrates remains challenging. Here, we demonstrate a transfer-free chemical vapor deposition (CVD) method to directly grow graphene films on dielectric substrates at fast growth rate using Cu as floating catalyst. A large area (centimeter level) graphene can be grown within 15 min using this CVD method, which is increased by 500 times compared to other direct CVD growth on dielectric substrate in the literatures. This research presents a significant progress in transfer-free growth of graphene and graphene device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  2. Zhu Y, Murali S, Cai W, Li XS, Suk JW, Potts JR, Ruoff RS. Adv Mater, 2010, 22: 3906–3924

    Article  CAS  Google Scholar 

  3. Gao W, Alemany LB, Ci L, Ajayan PM. Nat Chem, 2009, 1: 403–408

    Article  CAS  Google Scholar 

  4. Berger C, Song Z, Li X, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Science, 2006, 312: 1191–1196

    Article  CAS  Google Scholar 

  5. Kim H, Song I, Park C, Son M, Hong M, Kim Y, Kim JS, Shin HJ, Baik J, Choi HC. ACS Nano, 2013, 7: 6575–6582

    Article  CAS  Google Scholar 

  6. Teng PY, Lu CC, Akiyama-Hasegawa K, Lin YC, Yeh CH, Suenaga K, ChiuPW. Nano Lett, 2012, 12: 1379–1384

    Article  CAS  Google Scholar 

  7. Chen S, Ji H, Chou H, Li Q, Li H, Suk JW, Piner R, Liao L, Cai W, Ruoff RS. Adv Mater, 2013, 25: 2062–2065

    Article  CAS  Google Scholar 

  8. Zhang J, Hu P, Wang X, Wang Z, Liu D, Yang B, Cao W. J Mater Chem, 2012, 22: 18283–18290

    Article  CAS  Google Scholar 

  9. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Science, 2009, 324: 1312–1314

    Article  CAS  Google Scholar 

  10. Li X, Magnuson CW, Venugopal A, An J, Suk JW, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel EM, VoelM E, Colombo L, Ruoff RS. Nano Lett, 2010, 10: 4328–4334

    Article  CAS  Google Scholar 

  11. Cho J, Gao L, Tian J, Cao H, Wu W, Yu Q, Yitamben EN, Fisher B, Guest JR, Chen YP, Guisinger NP. ACS Nano, 2011, 5: 3607–3613

    Article  CAS  Google Scholar 

  12. Patera LL, Africh C, Weatherup RS, Blume R, Bhardwaj S, Castellarin-Cudia C, Knop-Gericke A, Schloegl R, Comelli G, Hofmann S, Cepek C. ACS Nano, 2013, 7: 7901–7912

    Article  CAS  Google Scholar 

  13. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Nature, 2009, 457: 706–710

    Article  CAS  Google Scholar 

  14. Ma T, Ren W, Liu Z, Huang L, Ma L, Ma X, Zhang Z, Peng L, Cheng H. ACS Nano, 2014, 8: 12806–12813

    Article  CAS  Google Scholar 

  15. Gao T, Xie S, Gao Y, Liu M, Chen Y, Zhang Y, Liu Z. ACS Nano, 2011, 5: 9194–9201

    Article  CAS  Google Scholar 

  16. Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z. Small, 2013, 9: 1360–1366

    Article  CAS  Google Scholar 

  17. Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareno J, Gambin V, Petrov I, Kodambaka S. Nano Lett, 2009, 9: 3985–3990

    Article  CAS  Google Scholar 

  18. Lupina G, Kitzmann J, Costina I, Lukosius M, Wenger C, Wolff A, Vaziri S, Ostling M, Pasternak I, Krajewska A, Strupinski W, Kataria S, Gahoi A, Lemme MC, Ruhl G, Zoth G, Luxenhofer O, Mehr W. ACS Nano, 2015, 9: 4776–4785

    Article  CAS  Google Scholar 

  19. Son M, Lim H, Hong M, Choi HC. Nanoscale, 2011, 3: 3089–3093

    Article  CAS  Google Scholar 

  20. Ding X, Ding G, Xie X, Huang F, Jiang M. Carbon, 2011, 49: 2522–2525

    Article  CAS  Google Scholar 

  21. Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, LiuY. JAm Chem Soc, 2011, 133: 17548–17551

    Article  CAS  Google Scholar 

  22. Hwang J, Kim M, Campbell D, Alsalman HA, Kwak JY, Shivaraman S, Woll AR, Singh AK, Hennig RG, Gorantla S, Rummeli MH, Spencer MG. ACS Nano, 2013, 7: 385–395

    Article  CAS  Google Scholar 

  23. Ruemmeli MH, Bachmatiuk A, Scott A, Borrnert F, Warner JH, Hoffman V, Lin JH, Cuniberti G, Buchner B. ACS Nano, 2010, 4: 4206–4210

    Article  CAS  Google Scholar 

  24. Sun J, Lindvall N, Cole MT, Teo KBK, Yurgens A. Appl Phys Lett, 2011, 98: 252107

    Article  Google Scholar 

  25. Bi H, Sun S, Huang F, Xie X, Jiang M. J Mater Chem, 2012, 22: 411–416

    Article  CAS  Google Scholar 

  26. Song Y, Liu J, Quan L, Pan N, Zhu H, Wang XP. JPhys Chem C, 2014, 118: 12526–12531

    Article  CAS  Google Scholar 

  27. Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W. JAm Chem Soc, 2012, 134: 3627–3630

    Article  CAS  Google Scholar 

  28. Wu Y, Hao Y, Jeong HY, Lee Z, Chen S, Jiang W, Wu Q, Piner RD, Kang J, Ruoff RS. Adv Mater, 2013, 25: 6744–6751

    Article  CAS  Google Scholar 

  29. Li X, Magnuson CW, Venugopal A, An J, Suk JW, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel EM, Voelkl E, Colombo L, Ruoff RS. Nano Lett, 2010, 10: 4328–4334

    Article  CAS  Google Scholar 

  30. Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M. Adv Funct Mater, 2013, 23: 198–203

    Article  CAS  Google Scholar 

  31. Hofrichter J, Szafranek BN, Otto M, Echtermeyer TJ, Baus M, Majerus A, Geringer V, Ramsteiner M, Kurz H. Nano Lett, 2010, 10: 36–42

    Article  CAS  Google Scholar 

  32. Zhang X, Li QQ, Han WP, Lu Y, Shi W, Wu J, Mikhaylushkin AS, Tan P. Nanoscale, 2014, 6: 7519–7525

    Article  CAS  Google Scholar 

  33. Li QQ, Zhang X, Han WP, Lu Y, Shi W, Wu J, Tan P. Carbon, 2015, 221–224

    Google Scholar 

  34. Tamboli SH, Kim BS, Choi G, Lee H, Lee D, Patil UM, Lim J, Kulkarni SB, Jun SC, Cho HH. J Mater Chem A, 2014, 2: 5077–5086

    Article  CAS  Google Scholar 

  35. Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov KS, Basko DM, Ferrari AC. Nano Lett, 2009, 9: 1433–1441

    Article  CAS  Google Scholar 

  36. Malard L, Pimenta M, Dresselhaus G, Dresselhaus MS. Phys Rep, 2009, 473: 51–87

    Article  CAS  Google Scholar 

  37. Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS, Hsieh GW, Jung SJ, Bonaccorso F, Paul PJ. ACS Nano, 2012, 6: 2992–3006

    Article  CAS  Google Scholar 

  38. Chen J, Guo Y, Wen Y, Huang L, Xue Y, Geng D, Wu B, Luo B, Yu G, Liu Y. Adv Mater, 2013, 25: 992–997

    Article  CAS  Google Scholar 

  39. Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi MK, Ma D, Song X, Wu X, Xiong C, Rummeli MH, Ding F, Zhang Y, Liu Z. Adv Mater, 2015

    Google Scholar 

  40. Nemes-Incze P, Osvath Z, Kamaras K, Biro LP. Carbon, 2008, 46: 1435–1442

    Article  CAS  Google Scholar 

  41. Paredes J, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD. Langmuir, 2009, 25: 5957–5968

    Article  CAS  Google Scholar 

  42. Oliveira MH, Schumann T, Fromm F, Koch R, Ostler M, Ramsteiner M, Seyller T, Lopes JMJ, Riechert H. Carbon, 2013, 52: 83–89

    Article  CAS  Google Scholar 

  43. Page AJ, Chandrakumar K, Irle S, Morokuma K. JAm Chem Soc, 2010, 133: 621–628

    Article  Google Scholar 

  44. Bachmatiuk A, Boerrnert F, Grobosch M, Schaffel F, Wolff U, Scott A, Zaka M, Warner JH, Klingeler R, Knupfer M, Buchner B, Rummeli MH. ACS Nano, 2009, 3: 4098–4104

    Article  CAS  Google Scholar 

  45. Medina H, Lin YC, Jin C, Lu CC, Yeh CH, Huang KP, Suenaga K, Robertson J, Chiu PW. Adv Funct Mater, 2012, 22: 2123–2128

    Article  CAS  Google Scholar 

  46. Kinoshita K. Carbon: Electrochemical and Physicochemical Properties. New York: John Wiley, 1988

    Google Scholar 

  47. Zou Z, Fu L, Song X, Zhang Y, Liu Z. Nano Lett, 2014, 14: 3832–3839

    Article  CAS  Google Scholar 

  48. Mott D, Galkowski J, Wang L, Luo J, Zhong CJ. Langmuir, 2007, 23: 5740–5745

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PingAn Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Zhang, J., Qiu, Y. et al. Fast growth of graphene on SiO2/Si substrates by atmospheric pressure chemical vapor deposition with floating metal catalysts. Sci. China Chem. 59, 707–712 (2016). https://doi.org/10.1007/s11426-015-0536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-0536-8

Keywords

Navigation