Skip to main content
Log in

Red phosphorescent organic light-emitting diodes based on a novel host material with thermally activated delayed fluorescent properties

  • Articles
  • SPECIAL TOPIC · Molecular Functional Materials and Applications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been paid to find ways to reduce the phosphors’ concentration and efficiency roll-off of PHOLEDs. In this work, we reported red emission PHOLEDs with low dopant concentration and low efficiency roll-off based on a novel host material 2,4-biscyanophenyl-6-(12-phenylindole[2,3-a]carbazole-ll-yl)-l,3,5-triazine (BCPICT), with thermally activated delayed fluorescent (TADF) properties. The device with 1.0% dopant concentration displayed a maximum external quantum efficiency of 10.7%. When the dopant concentration was increased to 2.0%, the device displayed a maximum external quantum efficiency of 10.5% and a low efficiency roll-off of 5.7% at 1000 cd/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yook KS, Lee JY. Adv Mater, 2012, 24: 3169–3190

    Article  CAS  Google Scholar 

  2. Choy W, Chan WK, Yuan Y. Adv Mater, 2014, 26: 5368–5399

    Article  CAS  Google Scholar 

  3. Kataishi R, Lkeda T, Sasaki T, Toyotaka K, Nakamura D, Miyake H, Lwaki Y, Watanabe K, Yanagisawa Y, Lkeda H, Nakashima H, Ohsawa N, Eguchi S, Seo S, Hirakata Y, Yamazaki S, Kurosaki D, Ohno M, Bower C, Cotton D, Matthews A, Andrew P, Gheorghiu C, Bergquist J. JSocInfDisp, 2015, 8: 381–447

    Google Scholar 

  4. Komatsu R, Nakazato R, Sasaki T, Suzuki A, Senda N, Kawata T, Jimbo Y, Aoyama T, Ohno N, Kawashima S, Lkeda H, Eguchi S, Hirakata Y, Yamazaki S, Shiraishi T, Yasumoto S, Nakada M, Sato M, Bower C, Cotton D, Mattews A, Andrew P, Gheorghiu C, Bergguist J. JSocInfDisp, 2015, doi: 10.1002/jsid.276

    Google Scholar 

  5. Romain M, Thiery S, Shirinskaya A, Declairieux C, Tondelier D, Geffrey B, Jeannin O, Berthelot JR, Metivier R, Poriel C. Angew Chem Int Ed, 2015, 54: 1176–1180

    Article  CAS  Google Scholar 

  6. Chen YH, Chen JS, Zhao YB, Ma DG. Appl Phys Lett, 2012, 100: 213301

    Article  Google Scholar 

  7. Han CM, Zhang ZS, Xu H, Li J, Xie GH, Chen RF, Zhao Y, Huang W. Angew Chem Int Ed, 2012, 51: 68–89

    Article  Google Scholar 

  8. Kim SY, Jeong WI, Mayr C, Park YS, Kim KH, Lee JH, Moon CK, Brutting W, Kim JJ. Adv Funct Mater, 2013. 23: 3896–3900

    Article  CAS  Google Scholar 

  9. Lee CW, Lee JY. Adv Mater, 2013, 21: 5450–5454

    Article  Google Scholar 

  10. Seino Y, Sasabe H, Pu YJ, Kido J. Adv Mater, 2014, 26: 1612–1616

    Article  CAS  Google Scholar 

  11. Lee JH, Lee SH, Yoo SJ, Kim KH, Kim JJ. Adv Funct Mater, 2014, 24: 4681–4688

    Article  CAS  Google Scholar 

  12. Shin H, Lee S, Kim KH, Moon CK, Yoo SJ, Lee JH, Kim JJ. Adv Mater, 2014, 26: 4730–4734

    Article  CAS  Google Scholar 

  13. Kim KH, Lee S, Moon CK, Kim SY, Park YS, Lee JH, Lee JW, Huh J, You Y, Kim JJ. Nat Commun, 2014, 5: 4769

    Article  CAS  Google Scholar 

  14. Udagawa K, Sasabe H, Cai C, Kido J. Adv Mater, 2014, 29: 5062–5066

    Article  Google Scholar 

  15. Jurow MJ, Mayr C, Schmidt TD, Lampe T, Djurovich PI, Brutting W, Thompson ME. Nat Mater, 2015, doi: 10.1038/namt.4428

    Google Scholar 

  16. Lee J, Chen HF, Batagoda T, Coburn C, Djurovich PI, Thompson ME, Forrest SR. Nat Mater, 2015, doi: 10.1038/namt.4446

    Google Scholar 

  17. Yook KS, Lee JY. Adv Mater, 2012, 24: 3169–3190

    Article  CAS  Google Scholar 

  18. Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T. Chem Rev, 2011, 255: 2622–2652

    CAS  Google Scholar 

  19. Wang Q, Oswald I, Perez MR, Jia HP, Shahub AA, Qiao QQ, Gnade BE, Omary MA. Adv Funct Mater, 2014, 24: 4746–4752

    Article  CAS  Google Scholar 

  20. Sasabe H, Nakanishi H, Watanabe Y, Yano S, Hirasawa M, Pu YJ, Kido J. Adv Funct Mater, 2013, 23: 5550–5555

    Article  CAS  Google Scholar 

  21. Yuan XD, Liang J, He YC, Li Q, Zhong C, Jiang ZQ, Liao LS. J Mater Chem C, 2014, 2: 6387–6394

    Article  CAS  Google Scholar 

  22. Wang K, Wang S, Wei J, Chen S, Liu D, Liu Y, Wang Y. J Mater Chem C, 2014, 2: 6817–6826

    Article  CAS  Google Scholar 

  23. Pan B, Huang H, Yang X, Jin J, Zhuang S, Mu G, Wang L. J Mater Chem C, 2014, 2: 7428–7435

    Article  CAS  Google Scholar 

  24. Murawski C, Leo K, Gather MC. Adv Mater, 2013, 25: 6801–6827

    Article  CAS  Google Scholar 

  25. Goush K, Yoshida K, Sato K, Adachi C. Nat Photonics, 2012, 6: 253–258

    Article  Google Scholar 

  26. Uoyama H, Coushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238

    Article  CAS  Google Scholar 

  27. Zhang QS, Li B, Huang SP, Nomura H, Tanaka H, Adachi C. Nat Photon, 2014, 8: 326–332

    Article  CAS  Google Scholar 

  28. Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T, Adachi C. Nat Commun, 2014, 5: 4016

    Article  CAS  Google Scholar 

  29. Zhang DD, Duan L, Li C, Li HY, Zhang DQ, Qiu Y. Adv Mater, 2014, 26: 5050–5055

    Article  CAS  Google Scholar 

  30. Zhang DD, Duan L, Li YL, Zhang DQ, Qiu Y. J Mater Chem C, 2014, 2: 8191–8197

    Article  CAS  Google Scholar 

  31. Hirata S, Sakai Y, Masui K, Tanaka H, Lee SY, Nomura H, Nakamura N, Yasumatsu M, Nakanotani H, Zhang QS, Shizu K, Miyazaki H, Adachi C. Nat Mater, 2015, 14: 330–336

    Article  CAS  Google Scholar 

  32. Higuchi T, Nakanotani H, Adachi C. Adv Mater, 2015, 27: 2019–2023

    Article  CAS  Google Scholar 

  33. Erickson NC, Holmes RJ. Adv Funct Mater, 2014, 24: 6074–6080

    Article  CAS  Google Scholar 

  34. Lee S, Kim KH, Limbach D, Park YS, Kim JJ. Adv Funct Mater, 2013, 23: 4105–4110

    Article  CAS  Google Scholar 

  35. Han C, Zhu L, Li J, Zhao F, Zhang Z, Xu H, Deng Z, Ma D, Yan P. Adv Mater, 2014, 26: 7070–7077

    Article  CAS  Google Scholar 

  36. Zhang DD, Duan L, Zhang DQ, Qiao J, Dong GF, Wang LD, Qiu Y. Org Electron, 2013, 14: 260–266

    Article  CAS  Google Scholar 

  37. Zhang DD, Duan L, Li YL, Li HY, Bin ZY, Zhang DQ, Qiao J, Dong GF, Wang LD, Qiu Y. Adv Mater, 2014, 24: 3551–3561

    CAS  Google Scholar 

  38. Zhang DD, Duan L, Zhang DQ, Qiu Y. J Mater Chem C, 2014, 2: 8983–8989

    Article  CAS  Google Scholar 

  39. Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C. Appl Phys Lett, 2011, 98: 083302

    Article  Google Scholar 

  40. Lee SY, Yasuda T, Nomura H, Adachi C. Appl Phys Lett, 2012, 101: 093306

    Article  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Wallingford CT: Gaussian Inc., 2010

    Google Scholar 

  42. Sheldrick GM. Acta Crystallogr, 2008, A64: 112

    Article  Google Scholar 

  43. Zhang QS, Komino T, Huang SP, Matsunami S, Goushi K, Adachi C. Adv Funct Mater, 2012, 22: 2327–2336

    Article  CAS  Google Scholar 

  44. Kim DH, Cho NS, Oh HY, Yang JH, Jeon WS, Park JS, Suh MC, Kwon JH. Adv Mater, 2011, 23: 2721–2726

    Article  CAS  Google Scholar 

  45. Valeur B. Molecular Fluorescence. Weinheim: Wiley-VCH, 2002

    Google Scholar 

  46. Kawamura Y, Brooks J, Brown JJ, Sasabe H, Adach C. Phys Rev Lett, 2006, 96: 017404

    Article  Google Scholar 

  47. Jeon WS, Park TJ, Kim SY, Pode R, Jang J, Kwon JH. Org Electron, 2009, 10: 240–246

    Article  CAS  Google Scholar 

  48. Wang Q, Ma DG. Chem Soc Rev, 2010, 39: 2387–2398

    Article  CAS  Google Scholar 

  49. Wang Q, Ding JQ, Ma DG, Cheng YX, Wang LX, Jing XB, Wang FS. Adv Funct Mater, 2009, 19: 84–95

    Article  Google Scholar 

  50. Wang Q, Ding JQ, Ma DG, Cheng YX, Wang LX, Wang FS. Adv Mater, 2009, 21: 2397–2401

    Article  CAS  Google Scholar 

  51. Wang Q, Oswald IWH, Perez MR, Jia HP, Gnade BE, Omary MA. Adv Funct Mater, 2013, 23: 5420–5428

    Article  CAS  Google Scholar 

  52. Chin BD, Suh MC, Kim MH, Lee ST, Kim HD, Chung HK. Appl Phys Lett, 2005, 86: 133505

    Article  Google Scholar 

  53. Diouf B, Jeon WS, Pode R, Kwon JH. Adv Mater Sci Eng, 2012, 2012: 794674

    Article  Google Scholar 

  54. Duan L, Zhang DQ, Wu KW, Huang XQ, Wang LD, Qiu Y. Adv Funct Mater, 2011, 21: 3540–3545

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, D., Zhang, Y. et al. Red phosphorescent organic light-emitting diodes based on a novel host material with thermally activated delayed fluorescent properties. Sci. China Chem. 59, 684–691 (2016). https://doi.org/10.1007/s11426-015-0506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-0506-2

Keywords

Navigation