Skip to main content
Log in

The catassembled generation of naphthalene diimide coordination networks with lone pair-π interactions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Catassembly is a new concept in molecular assembly that is analogous to catalysis in chemical synthesis. However, for most molecular-assembled processes, the catassembler contributions are rather inconspicuous due to the low activation barriers. As a result, few systems dealing with the catassembly are available until now. In this paper, we report that naphthalene diimide coordination networks are formed under the catassembly of lone-pair-bearing catassemblers (e.g., N,N-dimethylacetamide, N-methylpyrrolidin-2-one). During such molecular assembly, a stable transition state between the electron-deficient naphthalene diimide tectons and catassemblers via the less common lone pair-π interactions was observed, which is supposed to play the key role in the enhancement of coordination abilities of organic tectons and thus formation of the final coordination networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alivisatos P, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME. Adv Mater, 1998, 10: 1297–1336

    Article  Google Scholar 

  2. Lehn JM. Science, 2002, 295: 2400–2403

    Article  CAS  Google Scholar 

  3. Philp D, Stoddart JF. Angew Chem Int Ed, 1996, 35: 1155–1196

    Article  CAS  Google Scholar 

  4. Aida T, Meijer EW, Stupp SI. Science, 2012, 335: 813–817

    Article  CAS  Google Scholar 

  5. Lee YS. Self-Assembly and Nanotechnology: A Force Balance Approach. Hoboken: Wiley, 2008

    Book  Google Scholar 

  6. Noyori R. Asymmetric Catalysis in Organic Synthesis. New York: John Wiley, 1994. 16–94

    Google Scholar 

  7. List B. Chem Rev, 2007, 107: 5413–5415

    Article  CAS  Google Scholar 

  8. MacMillan DWC. Nature, 2008, 455: 304–308

    Article  CAS  Google Scholar 

  9. Dhakshinamoorthy A, Asiri AM, Garcia H. Chem Soc Rev, 2015, 44: 1922–1947

    Article  CAS  Google Scholar 

  10. Wang Y, Lin HX, Ding SY, Liu DY, Chen L, Lei ZC, Fan FR, Tian ZQ. Sci China Chem, 2012, 42: 525–547

    CAS  Google Scholar 

  11. Wang Y, Lin HX, Chen L, Ding SY, Lei ZC, Liu DY, Cao XY, Liang HJ, Jiang YB, Tian ZQ. Chem Soc Rev, 2014, 43: 399–411

    Article  CAS  Google Scholar 

  12. Prins J, De Jong F, Timmerman P, Reinhoudt DN. Nature, 2000, 408: 181–184

    Article  CAS  Google Scholar 

  13. Lauceri R, Raudino A, Scolaro LM, Micali N, Purrello R. J Am Chem Soc, 2002, 124: 894–895

    Article  CAS  Google Scholar 

  14. Zeng X, He YJ, Dai ZF, Wang J, Cao Q, Zhang YL. ChemPhysChem, 2009, 10: 954–962

    Article  CAS  Google Scholar 

  15. Zhang L, Tian Y, MH Liu. Phys Chem Chem Phys, 2011, 13: 17205–17209

    Article  CAS  Google Scholar 

  16. Qiu S, Xue M, Zhu G. Chem Soc Rev, 2014, 43: 6116–6140

    Article  CAS  Google Scholar 

  17. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY. Chem Soc Rev, 2014, 43: 6011–6061

    Article  CAS  Google Scholar 

  18. Zhou HC, Long JR, Yaghi OM. Chem Rev, 2012, 112: 673–674

    Article  CAS  Google Scholar 

  19. Stock N, Biswas S. Chem Rev, 2012, 112: 933–969

    Article  CAS  Google Scholar 

  20. Murdock CR, Hughes BC, Lu Z, Jenkins DM. Coord Chem Rev, 2014, 258: 119–136

    Article  Google Scholar 

  21. Zhao JP, Hu BW, Yang Q, Liu FC, Hu TL, Bu XH. Chin Sci Bull, 2009, 54: 2461–2466

    Google Scholar 

  22. Tian D, Liu S, Zhang D, Chang Z, Hu T, Bu X. Sci China Chem, 2013, 56: 1693–1700

    Article  CAS  Google Scholar 

  23. Fujita M. Chem Soc Rev, 1998, 27: 417–425

    Article  CAS  Google Scholar 

  24. Fox OD, Drew MGB, Beer PD. Angew Chem Int Ed, 2000, 39: 135–140

    Article  Google Scholar 

  25. De S, Mahata K, Schmittel M. Chem Soc Rev, 2010, 39: 1555–1575

    Article  CAS  Google Scholar 

  26. Brodin JD, Ambroggio XI, Tang C, Parent KN, Baker TS, Tezcan FA. Nat Chem, 2012, 4: 375–382

    Article  CAS  Google Scholar 

  27. Guha S, Goodson FS, Corson LJ, Saha S. J Am Chem Soc, 2012, 134: 13679–13691

    Article  CAS  Google Scholar 

  28. Liao JZ, Dui XJ, Zhang HL, Wu XY, Lu CZ. CrystEngComm, 2014, 16: 10530–10533

    Article  CAS  Google Scholar 

  29. Fang X, Yuan X, Song YB, Wang JD, Lin MJ. CrystEngComm, 2014, 16: 9090–9095

    Article  CAS  Google Scholar 

  30. Liu JJ, Wang Y, Hong YJ, Lin MJ, Huang CC, WX Dai. Dalton Trans, 2014, 43: 17908–17911

    Article  CAS  Google Scholar 

  31. Liu JJ, Guan YF, Jiao C, Lin MJ, Huang CC, Dai WX. Dalton Trans, 2015, 44: 5957–5960

    Article  CAS  Google Scholar 

  32. Liu JJ, Hong YJ, Guan YF, Lin MJ, Huang CC, Dai WX. Dalton Trans, 2015, 44: 653–658

    Article  CAS  Google Scholar 

  33. You MH, Yuan X, Fang X, Lin MJ. Supramol Chem, 2015, 27: 460–464

    Article  CAS  Google Scholar 

  34. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J. Angew Chem Int Ed, 2011, 50: 9564–9583

    Article  CAS  Google Scholar 

  35. Gamez P. Inorg Chem Front, 2014, 1: 35–43

    Article  CAS  Google Scholar 

  36. Bauzá A, Mooibroek TJ, Frontera A. Chem-PhysChem, 2015, 16: 2496–2517

    Google Scholar 

  37. Guha S, Saha S. J Am Chem Soc, 2010, 132: 17674–17677

    Article  CAS  Google Scholar 

  38. Sheldrick GM. Acta Crystallogr, Sect A: Fundam Crystallogr, 2008, 64: 112–122

    Article  CAS  Google Scholar 

  39. Spek AL. J Appl Crystallogr, 2003, 36: 7–13

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Revision D.01. Wallingford, CT: Gaussian Inc, 2013

  41. Zahn S, Mac Farlane DR, Izgorodina EI. Phys Chem Chem Phys, 2013, 15: 13664–13675

    Article  CAS  Google Scholar 

  42. Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104

    Article  Google Scholar 

  43. Papajak E, Zheng J, Xu X, Leverentz HR, Truhlar DG. J Chem Theory Comput, 2011, 7: 3027–3034

    Article  CAS  Google Scholar 

  44. Frisch MJ, Head-Gordon M, Pople JA. Chem Phys Lett, 1990, 166: 275–280

    Article  CAS  Google Scholar 

  45. Boys SF, Bernardi F. Mol Phys, 1970, 19: 553–566

    Article  CAS  Google Scholar 

  46. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W. J Am Chem Soc, 2010, 132: 6498–6506

    Article  CAS  Google Scholar 

  47. Lu T, Chen F. J Comp Chem, 2012, 33: 580–592

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Jin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, JJ., Fan, CR. et al. The catassembled generation of naphthalene diimide coordination networks with lone pair-π interactions. Sci. China Chem. 59, 1492–1497 (2016). https://doi.org/10.1007/s11426-015-0411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-0411-2

Keywords

Navigation