Skip to main content
Log in

Biosensing strategy based on photocurrent quenching of quantum dots via energy resonance absorption

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new concept of energy resonance absorption for photocurrent quenching was proposed using a system of quantum dots (QDs) and the matched dye. The QDs were used as the photocurrent producer, and the dye had an absorption band overlapped with that of the QDs, which led to the resonance absorption of the excitation energy and thus decreased the photocurrent of QDs. By using porphyrin and fluorscein isothiocyanate isomer I as the resonance absorption dyes, the proposed mechanism was proved by UV-Vis spectra, photoluminescence spectra and photocurrent-to-wavelength response, respectively. The interaction of the absorption-matched dye with biomolecule could be conveniently used to introduce it into the photocurrent quenching system, leading to a simple switch-off biosensing method for detection of the biomolecule. As example, a label-free method was proposed for photoelectrochemical detection of target DNA. This method showed a detection range from 6.0 to 600 nmol/L with a detection limit of 2.5 nmol/L. The result demonstrated that the photocurrent quenching via energy resonance absorption not only contributed to the theoretical study of photoelectrochemistry, but also provided a universal tool for photoelectrochemical biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gräzel M. Photoelectrochemical cells. Nature, 2001, 414: 338–344

    Article  Google Scholar 

  2. Christians JA, Fung RCM, Kamat PV. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc, 2014, 136: 758–764

    Article  CAS  Google Scholar 

  3. Song QL, Yang HB, Gan Y, Gong C, Li CM. Evidence of harvesting electricity by exciton recombination in an n-n type solar cell. J Am Chem Soc, 2010, 132: 4554–4555

    Article  CAS  Google Scholar 

  4. Peng KQ, Wang X, Li L, Wu XL, Lee ST. High-performance silicon nanohole solar cell. J Am Chem Soc, 2010, 132: 6872–6873

    Article  CAS  Google Scholar 

  5. Guo QJ, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc, 2010, 132: 17384–17386

    Article  CAS  Google Scholar 

  6. He MT, Li JB, Tan SB, Wang RZ, Zhang Y. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J Am Chem Soc, 2013, 135: 18718–18721

    Article  CAS  Google Scholar 

  7. Jiang H, Cheng YZ, Wang RZ, Zheng MM, Zhang Y, Yu SY. Synthesis of 6-alkylated phenanthridine derivatives using photoredox neutral somophilic isocyanide insertion. Angew Chem Int Ed, 2013, 52: 13289–13292

    Article  CAS  Google Scholar 

  8. Ghezzi D, Antognazza MR, Maschio MD, Lanzarini E, Benfenati F, Lanzani G. A hybrid bioorganic interface for neuronal photoactivation. Nat Commun, 2011, 2: 166

    Article  Google Scholar 

  9. Yildiz HB, Tel-Vered R, Willner I. CdS nanoparticles/β-cyclodextrinfunctionalized electrodes for enhanced photoelectrochemistry. Angew Chem Int Ed, 2008, 47: 6629–6633

    Article  Google Scholar 

  10. Wang P, Ma XY, Su MQ, Hao Q, Lei JP, Ju HX. Cathode photoelectrochemical sensing of copper(II) based on analyte-induced formation of exciton trapping. Chem Commun, 2012, 48: 10216–10218

    Article  CAS  Google Scholar 

  11. Tu WW, Dong YT, Lei JP, Ju HX. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles. Anal Chem, 2010, 82: 8711–8716

    Article  CAS  Google Scholar 

  12. Zhang XR, Li SG, Jin X, Zhang SS. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers. Chem Commun, 2011, 47: 4929–4931

    Article  CAS  Google Scholar 

  13. Haddour N, Chauvin J, Gondran C, Cosnier S. Photoelectrochemical immunosensor for label-free detection and quantification of anticholera toxin antibody. J Am Chem Soc, 2006, 128: 9693–9698

    Article  CAS  Google Scholar 

  14. Zhao WW, Ma ZY, Yu PP, Dong XY, Xu JJ, Chen HY. Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode. Anal Chem, 2012, 84: 917–923

    Article  CAS  Google Scholar 

  15. Hu CG, Zheng J, Su XY, Wang J, Wu WZ, Hu SS. Ultrasensitive all-carbon photoelectrochemical bioprobes for zeptomole immunosensing of tumor markers by an inexpensive visible laser light. Anal Chem, 2013, 85: 10612–10619

    Article  CAS  Google Scholar 

  16. Yin HS, Sun B, Zhou YL, Wang M, Xu ZN, Fu ZL, Ai SY. A new strategy for methylated DNA detection based on photoelectrochemical immunosensor using Bi2S3 nanorods, methyl bonding domain protein and anti-his tag antibody. Biosens Bioelectron, 2014, 51: 103–108

    Article  CAS  Google Scholar 

  17. Wang YH, Ge L, Wang PP, Yan M, Ge SG, Li NQ, Yu JH, Huang JD. Photoelectrochemical lab-on-paper device equipped with a porous Au-paper electrode and fluidic delay-switch for sensitive detection of DNA hybridization. Lab Chip, 2013, 13: 3945–3955

    Article  CAS  Google Scholar 

  18. Hao Q, Wang P, Ma XY, Su MQ, Lei JP, Ju HX. Charge recombination suppression-based photoelectrochemical strategy for detection of dopamine. Electrochem Commun, 2012, 21: 39–41

    Article  CAS  Google Scholar 

  19. Chen D, Zhang H, Li X, Li JH. Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Anal Chem, 2010, 82: 2253–2261

    Article  CAS  Google Scholar 

  20. Tel-Vered R, Yehezkeli O, Yildiz HB, Wilner OI, Willner I. Photoelectrochemistry with ordered CdS nanoparticle/Relay or photosensitizer/ Relay dyads on DNA scaffolds. Angew Chem Int Ed, 2008, 47: 8272–8276

    Article  CAS  Google Scholar 

  21. Bas D, Boyaci IH. Photoelectrochemical competitive DNA hybridization assay using semiconductor quantum dot conjugated oligonucleotides. Anal Bioanal Chem, 2011, 400: 703–707

    Article  CAS  Google Scholar 

  22. Zhang XR, Zhao YQ, Zhou HR, Qu B. A new strategy for photoelectrochemical DNA biosensor using chemiluminescence reaction as light source. Biosens Bioelectron, 2011, 26: 2737–2741

    Article  CAS  Google Scholar 

  23. Zeng XX, Ma SS, Bao JC, Tu WW, Dai ZH. Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing. Anal Chem, 2013, 85: 11720–11724

    Article  CAS  Google Scholar 

  24. Zhang XR, Guo YS, Liu MS, Zhang SS. Photoelectrochemically active species and photoelectrochemical biosensors. RCS Adv, 2013, 3: 2846–2857

    CAS  Google Scholar 

  25. Zhao WW, Wang J, Xu JJ, Chen HY. Energy transfer between CdS quantum dots and Au nanoparticles in photoelectrochemical detection. Chem Commun, 2011, 47: 10990–10992

    Article  CAS  Google Scholar 

  26. Liu X, Cheng LX, Lei JP, Liu H, Ju HX. Formation of surface traps on quantum dots by bidentate chelation and their application in low-potential electrochemiluminescent biosensing. Chem Eur J, 2010, 16: 10764–10770

    Article  CAS  Google Scholar 

  27. Jahan S, Mansoor F, Kanwal S. Polymers effects on synthesis of AuNPs, and Au/Ag nanoalloys: indirectly generated AuNPs and versatile sensing applications including anti-leukemic agent. Biosens Bioelectron, 2014, 53: 51–57

    Article  CAS  Google Scholar 

  28. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 2005, 4: 435–446

    Article  CAS  Google Scholar 

  29. Platt U, Perner D. Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV. J Geophys Res, 1980, 85: 7453–7458

    Article  CAS  Google Scholar 

  30. Gergel D, Cederbaum AI. Interaction of nitric oxide with 2-thio-5- nitrobenzoic acid: implications for the determination of free sulphydryl groups by Ellman’s reagent. Arch Biochem Biophys, 1997, 347: 282–288

    Article  CAS  Google Scholar 

  31. Balaz M, Napoli MD, Holmes AE, Mammana A, Nakanishi K, Berova N, Purrello R. A cationic zinc porphyrin as a chiroptical probe for Z-DNA. Angew Chem Int Ed, 2005, 44: 4006–4009

    Article  CAS  Google Scholar 

  32. D’Urso A, Mammana A, Balaz M, Holmes AE, Berova N, Lauceri R, Purrello R. Interactions of a tetraanionic porphyrin with DNA: from a Z-DNA sensor to a versatile supramolecular device. J Am Chem Soc, 2009, 131: 2046–2047

    Article  Google Scholar 

  33. Schwalb NK, Temps F. Base sequence and higher-order structure induce the complex excited-state dynamics in DNA. Science, 2008, 322: 243–245

    Article  CAS  Google Scholar 

  34. Lee S, Jeon SH, Kim BJ, Han SW, Jang HG, Kim SK. Classification of CD and absorption spectra in the Soret band of H2TMPyP bound to various synthetic polynucleotides. Biophys Chem, 2001, 92: 35–45

    Article  CAS  Google Scholar 

  35. Liu F, Choi JY, Seo TS. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens Bioelectron, 2010, 25: 2361–2365

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, G., Wang, P., Tu, W. et al. Biosensing strategy based on photocurrent quenching of quantum dots via energy resonance absorption. Sci. China Chem. 58, 879–884 (2015). https://doi.org/10.1007/s11426-014-5315-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5315-4

Keywords

Navigation