Skip to main content
Log in

Synthesis and photocatalytic properties of lotus-rootlike Au-ZnO nanostructures

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Unique lotus-rootlike Au-ZnO hybrid structures were obtained by controlling the deposition of pre-synthesized Au nanocrystals onto the surfaces of as-obtained ZnO structures. ZnO with lotus-rootlike structures was first prepared through a hydrothermal process. We also investigated the effects of various Au contents on the photocatalytic activities in detail. Notably, compared to the pure ZnO component, these resulting lotus-root-like Au-ZnO nanostructures with the appropriate amounts of Au content exhibited better photocatalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li JH, Zhang JZ. Optical properties and applications of hybrid semiconductor nanomaterials. Coordin Chem Rev, 2009, 253: 3015–3041

    Article  CAS  Google Scholar 

  2. Liu JF, Chen W, Liu XW, Zhou KB, Li YD. Au/LaVO4 nanocomposite: preparation, characterization, and catalytic activity for CO oxidation. Nano Res, 2008, 1: 46–55

    Article  CAS  Google Scholar 

  3. Che J, Yao N, Wan R, Zhang J. Hydrogenation of chloronitrobenzene to chloroaniline over Ni/TiO2 catalysts prepared by sol-gel method. Chem Eng J, 2009, 148: 164–172

    Article  Google Scholar 

  4. Bayindir M, Sorin F, Abouraddy, AF, Viens J, Hart SD, Joannopoulos JD, Fink Y. Metal-insulator-semiconductor optoelectronic fibres. Nature, 2004, 431: 826–829

    Article  CAS  Google Scholar 

  5. Abouraddy AF, Bayindir M, Benoit G, Hart SD, Kuriki K, Orf N, Shapira O, Sorin F, Temelkuran B, Fink Y. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat Mater, 2007, 6: 336–347

    Article  CAS  Google Scholar 

  6. Xu C, Xie J, Ho D, Wang C, Kohler N, Walsh EG, Morgan JR, Chin YE, Sun SH. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew Chem Int Ed, 2008, 47: 173–176

    Article  CAS  Google Scholar 

  7. Gur I, Fromer NA, Geier ML, Alivisatos AP. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 2005, 310: 462–465

    Article  CAS  Google Scholar 

  8. Huang X, Shang L, Chen S, Xia J, Qi XP, Wang XC, Zhang TR, Meng XM. Type-II ZnO nanorod-SnO2 nanoparticle heterostructures: characterization of structural, optical and photocatalytic properties. Nanoscale, 2013, 5: 3828–3833

    Article  CAS  Google Scholar 

  9. Lee YM, Garcia MA, Huls NAF, Sun SH. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew Chem Int Ed, 2010, 49: 1271–1274

    Article  CAS  Google Scholar 

  10. Liao FL, Huang YQ, Ge JW, Zheng WR, Tedsree K, Collier P, Hong XL, Tsang SC. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew Chem Int Ed, 2011, 50: 2162–2165

    Article  CAS  Google Scholar 

  11. Wang C, Yin HF, Dai S, Sun SH. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem Mater, 2010, 22: 3277–3282

    Article  CAS  Google Scholar 

  12. Subash B, Krishnakumar B, Swaminathan M, Shanthi M. Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag-ZnO for reactive Red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir, 2013, 29: 939–949

    Article  CAS  Google Scholar 

  13. Wang Q, Geng BY, Wang SZ. ZnO/Au hybrid nanoarchitectures: wet-chemical synthesis and enhanced photocatalytic performance. Environ Sci Technol, 2009, 43: 8968–8973

    Article  CAS  Google Scholar 

  14. Liu CP, Hui YY, Chen ZH, Ren JG, Zhou Y, Tang LB, Tang YB, Zapien JA, Lau SP. Solution-processable graphene oxide as an insulator layer for metal-insulator-semiconductor silicon solar cells. RSC Adv, 2013, 3: 17918–17923

    Article  CAS  Google Scholar 

  15. Han X, Qin WJ, Sun J, Yang J, Niu KY, Wang HL, Du XW. ZnO-Au hybrid nanocrystals via a high temperature reflux route. Mater Lett, 2009, 63: 1093–1095

    Article  CAS  Google Scholar 

  16. DeSario PA, Pietron JJ, Brintlinger TH, Szymczak LC, Rolison DR. Ultraviolet and visible photochemistry of methanol at 3D mesoporous networks: TiO2 and Au-TiO2. J Phys Chem C, 2013, 117: 15035–15049

    Article  Google Scholar 

  17. Mokari T, Costi R, Sztrum CG, Rabani E, Banin U. Formation of symmetric and asymmetric metal-semiconductor hybrid nanoparticles. Phys Status Solidi B, 2006, 243: 3952–3958

    Article  CAS  Google Scholar 

  18. Evgenidoua E, Fytianosa K, Pouliosb I. Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B: Environ, 2005, 59: 81–89

    Article  Google Scholar 

  19. Herring NP, AbouZeid K, Mohamed MB, Pinsk J, El-Shall MS. Formation mechanisms of gold-zinc oxide hexagonal nanopyramids by heterogeneous nucleation using microwave synthesis. Langmuir, 2011, 27: 15146–15154

    Article  CAS  Google Scholar 

  20. Yao KX, Liu X, Zhao L, Zeng HC, Han Y. Site-specific growth of Au particles on ZnO nanopyramids under ultraviolet illumination. Nanoscale, 2011, 3: 4195–4200

    Article  CAS  Google Scholar 

  21. Zheng YZ, Chen CQ, Zhan YY, Lin XY, Zheng Q, Wei KM, Zhu JF. Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property. J Phys Chem C, 2008, 112: 10773–10777

    Article  CAS  Google Scholar 

  22. Zhou G, Deng JC. Preparation and photocatalytic performance of Ag/ZnO nano-composites. Mat Sci Semicon Proc, 2007, 10: 90–96

    Article  CAS  Google Scholar 

  23. Yu H, Ming H, Gong JJ, Li HT, Huang H, Pan KM, Liu Y, Kang ZH, Wei J, Wang DT. Facile synthesis of Au/ZnO nanoparticles and their enhanced photocatalytic activity for hydroxylation of benzene. Bull Mater Sci, 2013, 36: 367–372

    Article  CAS  Google Scholar 

  24. Ranjith KS, Vanishri K, Rajendrakumar RT. Synthesis and catalytic properties of Al and Cu doped ZnO thin films on the photolytic degradation of methylene blue. Synth React Inorg M, 2014, 44: 1316–1322

    Article  CAS  Google Scholar 

  25. Li P, Wei Z, Wu T, Peng Q, Li YD. Au-ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc, 2011, 133: 5660–5663

    Article  CAS  Google Scholar 

  26. Peng S, Lee YM, Wang C, Yin HF, Dai S, Sun SH. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res, 2008, 1: 229–234

    Article  CAS  Google Scholar 

  27. Zhang Z, Lu M, Xu H, Chin WS. Shape-controlled synthesis of zinc oxide: a simple method for the preparation of metal oxide nanocrystals in non-aqueous medium. Chem Eur J, 2007, 13: 632–638

    Article  CAS  Google Scholar 

  28. Li P, Wang DS, Wei Z, Peng Q, Li YD. Systematic synthesis of ZnO nanostructures. Chem Eur J, 2013, 19: 3735–3740

    Article  CAS  Google Scholar 

  29. Boyle DS, Govender K, O’Brien P. Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chem Commun, 2002: 80–81

    Google Scholar 

  30. Yu H, Chen M, Rice PM, Wang SX, White RL, Sun SH. Dumbbell- like bifunctional Au-Fe3O4 nanoparticles. Nano Lett, 2005, 5: 379–382

    Article  CAS  Google Scholar 

  31. Li Z, Wang GZ, Yang QH, Shao ZB, Wang Y. Synthesis and electrical property of metal/ZnO coaxial nanocables. Nanoscale Res Lett, 2012, 7: 316

    Article  Google Scholar 

  32. Zhou G, Deng JC. Preparation and photocatalytic performance of Ag/ZnO nano-composites. Mat Sci Semicon Proc, 2007, 10: 90–96

    Article  CAS  Google Scholar 

  33. Lai YL, Meng M, Yu YF. One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation. Appl Catal BEnviron, 2010, 100: 491–501

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhou, B., Zhang, S. et al. Synthesis and photocatalytic properties of lotus-rootlike Au-ZnO nanostructures. Sci. China Chem. 58, 858–862 (2015). https://doi.org/10.1007/s11426-014-5307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5307-4

Keywords

Navigation