Skip to main content
Log in

Metallated conjugation in small-sized-molecular donors for solution-processed organic solar cells

  • Articles
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Four metallated conjugated oligothiophenes, S-1, S-2, S-3 and S-4, with platinum(II) aryleneethynylenes as the electron-rich building block were synthesized to investigate their physicochemical and photovoltaic properties. These small molecules possess fairly low-lying HOMO energy levels which match with the LUMO energy level of the electron acceptor PC70BM ([6,6]-phenyl-C71-butyric acid methyl ester). Using the simple process of spin-coating solution fabrication technique, S-1:PC70BM (1:4, w/w) based organic solar cells exhibiting a high V oc of 0.913 V, with a PCE value of 0.88% were developed. In contrast, the OSC device based on S-2:PC70BM (3:7, w/w) displayed a higher PCE of 1.59% with a higher J sc value of 5.89 mA cm−2. The device based on S-4:PC70BM (1:4, w/w) exhibited a PCE value of 1.56%, with a V oc of 0.917 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  2. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A. Materials and applications for large area electronics: solution-based approaches. Chem Rev, 2010, 110: 3–24

    Article  CAS  Google Scholar 

  3. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photonics, 2012, 6: 153–161

    Article  CAS  Google Scholar 

  4. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  Google Scholar 

  5. Li Y, Zou Y. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv Mater, 2008, 20: 2952–2958

    Article  CAS  Google Scholar 

  6. Chen J, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    Article  CAS  Google Scholar 

  7. Su YW, Lan SC, Wei KH. Organic photovoltaics. Mater Today, 2012, 15: 554–562

    Article  CAS  Google Scholar 

  8. Po R, Carbonera C, Bernardi A, Camaioni N. The role of the buffer layers in polymer solar cells. Energy Environ Sci, 2011, 4: 285–310

    Article  CAS  Google Scholar 

  9. Zhang M, Guo X, Ma W, Zhang S, Huo L, Ade H, Hou J. An easy and effective method to modulate molecular energy level of the polymer based on benzodithiophene for the application in polymer solar cells. Adv Mater, 2014, 26: 2089–2095

    Article  CAS  Google Scholar 

  10. Zhang M, Gu Y, Guo X, Liu F, Zhang S, Huo L, Russell TP, Hou J. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. Adv Mater, 2013, 25: 4944–4949

    Article  CAS  Google Scholar 

  11. Zhang M, Guo X, Zhang S, Hou J. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Adv Mater, 2014, 26: 1118–1123

    Article  CAS  Google Scholar 

  12. Guo X, Zhang M, Tan J, Zhang S, Huo L, Hu W, Li Y, Hou J. Influence of D/A ratio on photovoltaic performance of a highly efficient polymer solar cell system. Adv Mater, 2012, 24: 6536–6541

    Article  CAS  Google Scholar 

  13. Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y. High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy Environ Sci, 2012, 5: 7943–7949

    Article  CAS  Google Scholar 

  14. He Z, Zhong C, Huang X, Wong W-Y, Wu H, Chen L, Su S, Cao Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater, 2011, 23: 4636–4643

    Article  CAS  Google Scholar 

  15. Liu S, Zhang K, Lu J, Zhang J, Yip H-L, Huang F, Cao Y. High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J Am Chem Soc, 2013, 135: 15326–15329

    Article  CAS  Google Scholar 

  16. Liang Y, Yu L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc Chem Res, 2010, 43: 1227–1236

    Article  CAS  Google Scholar 

  17. Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Energy Mater, 2010, 22: E135–E138

    Article  CAS  Google Scholar 

  18. Li CZ, Chang CY, Zang Y, Ju HX, Chueh CC, Liang PW, Cho N, Ginger DS, Jen AKY. Suppressed charge recombination in inverted organic photovoltaics via enhanced charge extraction by using a conductive fullerene electron transport layer. Adv Mater, 2014, DIO: 10.1002/adma.201402276

    Google Scholar 

  19. Liang PW, Liao CY, Chueh CC, Zuo F, Williams ST, Xin XK, Lin J, Jen AKY. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater, 2014, 26: 3748–3754

    Article  CAS  Google Scholar 

  20. Cui C, Wong W-Y, Li Y. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ Sci, 2014, 7: 2276–2284

    Article  CAS  Google Scholar 

  21. Cui C, Min J, Ho C-L, Ameri T, Yang P, Zhao J, Brabec CJ, Wong W-Y. A new two-dimensional oligothiophene end-capped with alkyl cyanoacetate groups for highly efficient solution-processed organic solar cells. Chem Commun, 2013, 49: 4409–4411

    Article  CAS  Google Scholar 

  22. Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, Chen Y. High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit. Adv Mater, 2011, 23: 5387–5391

    Article  CAS  Google Scholar 

  23. Lin Y, Li Y, Zhan X. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev, 2012, 41: 4245–4272

    Article  CAS  Google Scholar 

  24. Shang H, Fan H, Liu, Y, Hu W, Li Y, Zhan X. New X-shaped oligothiophenes for solution-processed solar cells. J Mater Chem, 2011, 21: 9667–9673

    Article  CAS  Google Scholar 

  25. Shang H, Fan H, Liu Y, Hu W, Li Y, Zhan X. A solution-processable star-shaped molecule for high-performance organic solar cells. Adv Mater, 2011, 23: 1554–1557

    Article  CAS  Google Scholar 

  26. Lin Y, Zhang Z, Bai H, Li Y, Zhan X. A star-shaped oligothiophene end-capped with alkyl cyanoacetate groups for solution-processed organic solar cells. Chem Commun, 2012, 48: 9655–9657

    Article  CAS  Google Scholar 

  27. Lin Y, Zhang Z, Li Y, Zhu D, Zhan X. One, two and three-branched triphenylamine-oligothiophene hybrids for solution-processed solar cells. J Mater Chem A, 2013, 1: 5128–5135

    Article  CAS  Google Scholar 

  28. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics, 2012, 6: 591–595

    Google Scholar 

  29. Ye L, Zhang S, Zhao W, Yao H, Hou J. Highly efficient 2D-conju-gated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem Mater, 2014, 26: 3603–3605

    Article  CAS  Google Scholar 

  30. Knibbe H, Rehm D, Weller A. Intermediates and kinetics of fluorescence quenching by electron transfer. Ber Bun Physik Chem, 1968, 72: 257–263

    CAS  Google Scholar 

  31. Rehm D, Weller A. Kinetik und mechanismus der elektronübertragung bei der fluoreszenzlöschung in acetonitril. Ber Bun Physik Chem, 1969, 73: 834–839

    CAS  Google Scholar 

  32. Chawdhury N, Kohler A, Friend RH, Younus M, Long N, Raithby PR, Lewis J. Synthesis and electronic structure of platinum-containing poly-ynes with aromatic and heteroaromatic rings. Macromolecules, 1998, 31: 722–727

    Article  CAS  Google Scholar 

  33. Guo F, Kim YG, Reynolds JR, Schanze KS. Platinum-acetylide polymer based solar cells: involvement of the triplet state for energy conversion. Chem Commun, 2006, 1887–1889

    Google Scholar 

  34. Wong W-Y, Wang X, He Z, Djurisic AB, Yip CT, Cheung KY, Wang H, Mak CSK, Chan W. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat Mater, 2007, 6: 521–527

    Article  CAS  Google Scholar 

  35. Wong W-Y, Wang X, He Z, Chan K, Djurisic AB, Cheung KY, Yip CT, Ng AMC, Xi Y, Mak CSK, Chan W. Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s. J Am Chem Soc, 2007, 129: 14372–14380

    Article  CAS  Google Scholar 

  36. Wong W-Y. Metallopolyyne polymers as new functional materials for photovoltaic and solar cell applications. Macromol Chem Phys, 2008, 209: 14–24

    Article  CAS  Google Scholar 

  37. Baek NS, Hau SK, Yip HL, Acton O, Chen KS, Jen AKY. High performance amorphous metallated π-conjugated polymers for field-effect transistors and polymer solar cells. Chem Mater, 2008, 20: 5734–5736

    Article  CAS  Google Scholar 

  38. Wong W-Y, Ho C-L. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes. Acc Chem Res, 2010, 43: 1246–1256

    Article  CAS  Google Scholar 

  39. Duan C, Huang F, Cao Y. Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J Mater Chem, 2012, 22: 10416–10434

    Article  CAS  Google Scholar 

  40. Beaujuge PM, Fréchet JM. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc, 2011, 133: 20009–20029

    Article  CAS  Google Scholar 

  41. Wang Q, He Z, Wild A, Wu H, Cao Y, Schubert US, Chui C-H, Wong W-Y. Platinum-acetylide polymers with higher dimensionality for organic solar cells. Chem Asian J, 2011, 6: 1766–1777

    Article  CAS  Google Scholar 

  42. Wong W-Y, Ho C-L. Di-, oligo- and polymetallaynes: syntheses, photophysics, structures and applications. Coord Chem Rev, 2006, 250: 2627–2690

    Article  CAS  Google Scholar 

  43. Whittell GR, Manners I. Metallopolymers: new multifunctional materials. Adv Mater, 2007, 19: 3439–3468

    Article  CAS  Google Scholar 

  44. Sonogashira K, Takahashi S, Hagihara N. A new extended chain polymer, poly[trans-bis(tri-n-butylphosphine)platinum 1,4-butadiynediyl]. Macromolecules, 1977, 10: 879–880

    Article  CAS  Google Scholar 

  45. Zhao X, Piliego C, Kim B, Poulsen DA, Ma B, Unruh DA, Fréchet J MJ. Solution-processable crystalline platinum-acetylide oligomers with broadband absorption for photovoltaic cells. Chem Mater, 2010, 22: 2325–2332

    Article  CAS  Google Scholar 

  46. Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bassler H, Porsch M, Daub J. Efficient two layer LEDs on a polymer blend basis. Adv Mater, 1995, 7: 551–554

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaohua Cui, Wallace C. H. Choy or Wai-Yeung Wong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Zhang, Y., Choy, W.C.H. et al. Metallated conjugation in small-sized-molecular donors for solution-processed organic solar cells. Sci. China Chem. 58, 347–356 (2015). https://doi.org/10.1007/s11426-014-5301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5301-x

Keywords

Navigation