Skip to main content
Log in

Perovskite thin-film solar cell: excitation in photovoltaic science

  • Reviews
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

As a new member of thin-film solar cells, the perovskite solar cells have inspired a new research hot in new photoelectric materials and devices, and have given a new energy to the photovoltaic science. Currently, various device structures, including mesoporous and planar, with and without hole transport material have been developed. In this review, much focus has been addressed to the deposition of high-quality perovskite films, structural optimization, and interface engineering as well as the understanding of the charge generation, transport, and recombination mechanisms of the devices. Furthermore, cost, stability, and environment issues of the cell are also discussed for commercial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karlin KD, Mitzi DB. Synthesis, structure, and properties of organicinorganic perovskites and related materials. Prog Inorg Chem, 2007, 48: 1–121

    Google Scholar 

  2. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051

    CAS  Google Scholar 

  3. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591

    Google Scholar 

  4. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643–647

    CAS  Google Scholar 

  5. Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Grätzel M, Nazeeruddin MK, Bolink HJ. Perovskite solar cells employing organic charge-transport layers. Nat Photonics, 2014, 8: 128–132

    CAS  Google Scholar 

  6. Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013, 4: 2761

    Google Scholar 

  7. Zhou HP, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong ZR, You JB, Liu YS, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542–546

    CAS  Google Scholar 

  8. Im JH, Lee CR, Lee JW, Park SW, Park NG. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3: 4088–4093

    CAS  Google Scholar 

  9. Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim HJ, Sarkar A, Nazeeruddin MK, Grätzel M, Seok SI. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics, 2013, 7: 486–491

    CAS  Google Scholar 

  10. Ball JM, Lee MM, Hey Andrew, Snaith HJ. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ Sci, 2013, 6: 1739–1743

    CAS  Google Scholar 

  11. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao Peng, Nazeeruddin MK, Grätzel Michael. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–319

    CAS  Google Scholar 

  12. Liu MZ, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395–398

    CAS  Google Scholar 

  13. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 42). Prog Photovolt: Res Appl, 2013, 21: 827–837

    Google Scholar 

  14. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 44). Prog Photovolt: Res Appl, 2014, 22: 701–710

    Google Scholar 

  15. Sze SM, Ng KK. Physics of Semiconductor Devices. Third Edition. Wiley, New York, 2006

    Google Scholar 

  16. Shi JJ, Dong J, Lv ST, Xu YZ, Zhu LF, Xiao JY, Xu X, Wu HY, Li DM, Luo YH, Meng QB. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Appl Phys Lett, 2014, 104: 063901

    Google Scholar 

  17. Marchioro A, Teuscher J, Friedrich D, Kunst M, Krol R, Moehl T, Grätzel M, Moser JE. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat Photonics, 2014, 8: 250–255

    CAS  Google Scholar 

  18. Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC. Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347

    CAS  Google Scholar 

  19. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344

    CAS  Google Scholar 

  20. Ponseca Jr. CS, Savenije TJ, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf JP, Sundstrom V. Organometal halide perovskite solar cell materials rationalizedultrafast charge generation, high and microsecond-long balanced mobilities and slow recombination. J Am Chem Soc, 2014, 136: 5189–5192

    CAS  Google Scholar 

  21. Lee JW, Seol DJ, Cho AN, Park NG. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv Mater, 2014, 26: 4991–4998

    CAS  Google Scholar 

  22. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897–903

    CAS  Google Scholar 

  23. Jeon NJ, Lee HG, Kin YC, Seo J, Noh JH, Lee J, Seok SI. o-Methoxy substituents in spiro-OMeTAD for efficient inorganicorganic hybrid perovskite solar cells. J Am Chem Soc, 2014, 136: 7837–7840

    CAS  Google Scholar 

  24. Ryu S, Noh JH, Jeon NJ, Kim YC, Yang WS, Seo J, Seok SI. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ Sci, 2014, 7: 2614–2618

    CAS  Google Scholar 

  25. Son DY, Im JH, Kim HS, Park NG. 11% Efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system. J Phys Chem C, 2014, 118: 16567–16573

    CAS  Google Scholar 

  26. Bi D, Boschloo G, Schwarzmuller S, Yang L, Johansson EM, Hagfeldt A. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale, 2013, 5: 11686–11691

    CAS  Google Scholar 

  27. Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith HJ. Sub 150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ Sci, 2014, 7: 1142–1147

    CAS  Google Scholar 

  28. Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−x Clx perovskite solar cells. Nat Commun, 2014, 5: 3461

    Google Scholar 

  29. Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ. Overcoming ultraviolet light instability of sensitized TiO2 with mesosuperstructured organometal tri-halide perovskite solar cells. Nat Commun, 2013, 4: 2885

    Google Scholar 

  30. Eperon GE, Burlakov VM, Docampo P, Goriely A, Snaith HJ. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Func Mater, 2014, 24: 151–157

    CAS  Google Scholar 

  31. Saliba M, Tan KW, Sai H, Moore DT, Scott T, Zhang W, Estroff LA, Wiesener U, Snaith HJ. The influence of thermal processing protocol upon the crystallization and photovoltaic performance of organicinorganic lead trihalide perovskites. J Phys Chem C, 2014, 118: 17171–17177

    CAS  Google Scholar 

  32. Chen Q, Zhou H, Hong Z, Luo S, Duan HS, Wang HH, Liu Y, Li G, Yang Y. Planar heterojunction perovskite solar cells via vapor assisted solution process. J Am Chem Soc, 2014, 136: 622–625

    CAS  Google Scholar 

  33. Liu, D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 2014, 8: 133–138

    CAS  Google Scholar 

  34. Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci, 2014, 7: 2619–2623

    CAS  Google Scholar 

  35. Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng YB, Spiccia L. A fast depositioncrystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed, 2014, 126: 10056–10061

    Google Scholar 

  36. Hu Q, Wu J, Jiang C, Liu TH, Que XL, Zhu R, Gong QH. Manipulation on the energy level of electron collection interface and device optimization for the perovskite solar cell. 1st Conference on Perovskite Solar Cells & New Generation Solar Cells, Beijing, 2014

    Google Scholar 

  37. K WJ, Fang GJ. A simple-structure high-efficiency perovskite solar cell. 1st Conference on Perovskite Solar Cells & New Generation Solar Cells, Beijing, 2014

    Google Scholar 

  38. Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52: 9019–9038

    CAS  Google Scholar 

  39. Giorgi G, Fujisawa JI, Segawa H, Yamashita K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis. J Phys Chem Lett, 2013, 4: 4213–4216

    CAS  Google Scholar 

  40. Jeon NJ, Lee J, Noh JH, Nazeeruddin MK, Grätzel M, Seok SI. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J Am Chem Soc, 2013, 135: 19087–19090

    CAS  Google Scholar 

  41. Christians JA, Fung RCM, Kamat PV. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc, 2014, 136: 758–764

    CAS  Google Scholar 

  42. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc, 2012, 134: 17396–17399

    CAS  Google Scholar 

  43. Laban WA, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cell. Energy Environ Sci, 2013, 6: 3249–3253

    CAS  Google Scholar 

  44. Aharon S, Gamliel S, Cohen BE, Etgar L. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys Chem Chem Phys, 2014, 16: 10512–10518

    CAS  Google Scholar 

  45. Shi JJ, Luo YH, Wei HY, Luo JH, Dong J, Lv ST, Xiao JY, Xu YZ, Zhu LF, Xu X, Wu HJ, Li DM, Meng QB. Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. ACS Appl Mater Interfaces, 2014, 6: 9711–9718

    CAS  Google Scholar 

  46. Ku Z, Rong Y, Xu M, Liu T, Han HW. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci Rep, 2013, 3: 3132

    Google Scholar 

  47. Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han HW. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345: 295–298

    CAS  Google Scholar 

  48. Hu H, Wang D, Zhou Y, Zhang J, Lv S, Pang S, Chen X, Liu Z, Padture NP, Cui G. Vapour-based processing of hole-conductor-free CH3NH3PbI3 perovskite/C60 fullerene planar solar cells. RSC Adv, 2014, 4: 28964–28967

    CAS  Google Scholar 

  49. Kumar MH, Yantara N, Dharani S, Grätzel M, Mhaisalkar S, Boix PP, Mathews N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun, 2013, 49: 11089–11091

    CAS  Google Scholar 

  50. Roldán-Carmona C, Malinkiewicz O, Soriano A, Espallargas GM, Garcia A, Reinecke P, Kroyer T, Dar MI, Nazeeruddin MK, Bolink HJ. Flexible high efficiency perovskite solar cells. Energy Environ Sci, 2014, 7: 994–997

    Google Scholar 

  51. You JB, Hong ZR, Yang Y, Chen Q, Cai M, Song TB, Chen CC, Lu SR, Liu YS, Zhou HP, Yang Y. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8: 1674–1680

    CAS  Google Scholar 

  52. Chiang YF, Jeng JY, Lee MH, Peng SR, Chen P, Guo TF, Wen TC, Hsu YJ, Hsu CM. High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate. Phys Chem Chem Phys, 2014, 16: 6033–6040

    CAS  Google Scholar 

  53. Juarez-Perez EJ, Wuβler M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I. Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. J Phys Chem Lett, 2014, 5: 680–685

    CAS  Google Scholar 

  54. Wu YZ, Yang XD, Chen H, Zhang K, Qin CJ, Liu J, Peng WQ, Islam A, Bi EB, Ye F, Yin MS, Zhang P, Han LY. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl Phys Express, 2014, 7: 052301

    Google Scholar 

  55. Wang JTW, Ball JM, Barea EM, Abate A, Alexander-Webber JA, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith HJ, Nicholas RJ. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano lett, 2013 14: 724–730

    Google Scholar 

  56. Yella A, Heiniger LP, Gao P, Nazeeruddin MK, Grätzel M. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano lett, 2014, 14: 2591–2596

    CAS  Google Scholar 

  57. Wu YZ, Islam A, Yang XD, Qin CJ, Liu J, Zhang K, Peng WQ, Han LY. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ Sci, 2014, 7: 2934–2938

    CAS  Google Scholar 

  58. Lee JW, Lee TY, Yoo PJ, Grätzel M, Mhaisalkar S, Park NG. Rutile TiO2-based perovskite solar cells. J Mater Chem A, 2014, 2: 9251–9259

    CAS  Google Scholar 

  59. Crossland EJW, Noel Nakita, Sivaram Varun, Leijtens Tomas, AlexanderWebber JA, Snaith HJ. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 2013, 495: 215–219

    CAS  Google Scholar 

  60. Qiu JH, Qiu YC, Yan KY, Zhong M, Mu C, Yan H, Yang SH. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale, 2013, 5: 3245–3248

    CAS  Google Scholar 

  61. Kim HS, Lee JW, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S, Grätzel M, Park NG. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett, 2013, 13: 2412–2417

    CAS  Google Scholar 

  62. Manseki K, Ikeya T, Tamura A, Ban T, Sugiura T, Yoshida T. Mg-doped TiO2 nanorods improving open-circuit voltages of ammonium lead halide perovskite solar cells. RSC Adv, 2014, 4: 9652–9655

    CAS  Google Scholar 

  63. Dharani S, Mulmudi HK, Yantara N, Trang PTT, Park NG, Grätzel M, Mhaisalkar S, Mathews N, Boix PP. High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale, 2014, 6: 1675–1679

    CAS  Google Scholar 

  64. Gao XF, Li JY, Baker J, Hou Y, Guan DS, Chen JH, Yuan C. Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films. Chem Commun, 2014, 50: 6368–6371

    CAS  Google Scholar 

  65. Sarkar A, Jeon NJ, Noh JH, Seok SI. Well-organized mesoporous TiO2 photoelectrodes by block copolymer-induced sol-gel assembly for inorganic-organic hybrid perovskite solar cells. J Phys Chem C, 2014, 118: 16688–16693

    CAS  Google Scholar 

  66. Rong YG, Ku ZL, Mei AY, Liu TF, Xu M, Ko SG, Li X, Han HW. Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes. J Phys Chem Lett, 2014, 5: 2160–2164

    CAS  Google Scholar 

  67. Qin P, Domanski AL, Chandiran AK, Berger R, Butt HJ, Dar MI, Moehl T, Tetreault N, Gao P, Ahmad S, Nazeeruddin MK, Grätzel M. Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells. Nanoscale, 2014, 6: 1508–1514

    CAS  Google Scholar 

  68. Pathak SK, Abate A, Ruckdeschel P, Roose B, Gödel KC, Vaynzof Y, Santhala A, Watanabe SI, Hollman DJ, Noel N, Sepe A, Wiesner U, Friend R, Snaith HJ, Steiner U. Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2. Adv Funct Mater, 2014, 24: 6046–6055

    CAS  Google Scholar 

  69. Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Momose H, Hayase S. Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells. ChemPhysChem, 2014, 15: 1062–1069

    CAS  Google Scholar 

  70. Mahmood K, Swain BS, Jung HS. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale, 2014, 6: 9127–9138

    CAS  Google Scholar 

  71. Ramos FJ, López-Santos MC, Guillén E, Nazeeruddin MK, Grätzel M, Gonzalez-Elipe AR, Ahmad S. Perovskite solar cells based on nanocolumnar plasma deposited ZnO thin films. ChemPhysChem, 2014, 15: 1148–1153

    CAS  Google Scholar 

  72. Abrusci A, Stranks SD, Docampo P, Yip HL, Jen AK, Snaith HJ. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett, 2013, 13: 3124–3128

    CAS  Google Scholar 

  73. Ito S, Tanaka S, Manabe K, Nishino H. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C, 2014, 118: 16995–17000

    CAS  Google Scholar 

  74. Zhu ZL, Ma JN, Wang ZL, Mu C, Fan ZT, Du LL, Bai Y, Fan LZ, Yan H, Phillips DL, Yang SH. Efficiency enhancement of perovskite solar cells through fast electron extraction: The role of graphene quantum dots. J Am Chem Soc, 2014, 136: 3760–3763

    CAS  Google Scholar 

  75. Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey SS, Ma TL, Hayase S. All-solid perovskite solar cells with HOCO-R-NH3 + I anchor-group inserted between porous titania and perovskite. J Phys Chem C, 2014, 118: 16651–16659

    CAS  Google Scholar 

  76. Bi DQ, Moon SJ, Häggman L, Boschloo G, Yang L, Johansson EMJ, Nazeeruddin MK, Grätzel M, Hagfeldt A. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv, 2013, 3: 18762–18766

    CAS  Google Scholar 

  77. Kim HB, Choi H, Jeong J, Kim S, Walker B, Song S, Kim JY. Mixed solvents for the optimization of morphology in solutionprocessed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6: 6679–6683

    CAS  Google Scholar 

  78. Wang Q, Shao YC, Dong QF, Xiao ZG, Yuan YB, Huang JS. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ Sci, 2014, 7: 2359–2365

    CAS  Google Scholar 

  79. Seo J, Park S, Kim YC, Jeon NJ, Noh JH, Yoon SC, Seok SI. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ Sci, 2014, 7: 2642–2646

    CAS  Google Scholar 

  80. Baikie T, Fang Y, Kadro JM, Schreyer M, Wei FX, Mhaisalkar SG, Grätzel M, White TJ. Synthesis and crystal chemistry of the hybrid perovskite CH3NH3PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1: 5628–5641

    CAS  Google Scholar 

  81. Umebayashi T, Asai K, Kondo K, Nakao A. Electronic structures of lead iodide based low-dimensional crystals. Phys Rev B, 2003, 67: 155405

    Google Scholar 

  82. Yin WJ, Shi TT, Yan YF. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104: 063903

    Google Scholar 

  83. Yin WJ, Shi TT, Yan YF. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater, 2014, 26: 4653–4658

    CAS  Google Scholar 

  84. Ishida H, Maeda H, Hirano A, Kubozono Y, Furukawa Y. Local structures around Pb(II) and Sn(II) in CH3NH3PbX3 (X=Cl, Br, I) and CH3NH3SnX3 (X=Br, I) Studied by Pb LIII-Edge and Sn K-Edge EXAFS. Phys State Solid (a), 1997, 159: 277–282

    CAS  Google Scholar 

  85. Kawamura Y, Mashiyama H, Hasebe K. Structural study on cubictetragonal transition of CH3NH3PbI3. J Phys Soc Jpn, 2002, 71: 1694–1697

    CAS  Google Scholar 

  86. Kagan CR, Mitzi DB, Dimitrakopoulos CD. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 1999, 286: 945–947

    CAS  Google Scholar 

  87. Mitzi DB, Wang S, Feild CA, Chess CA, Guloy AM. Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets. Science, 1995, 267: 1473–1476

    CAS  Google Scholar 

  88. Zhu X, Su HB, Marcus RA, Michel-Beyerle ME. Computed and experimental absorption spectra of the perovskite CH3NH3PbI3. J Phys Chem Lett, 2014, 5: 3061–3065

    CAS  Google Scholar 

  89. Feng J, Xiao B. Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3(X=I and Br) phases predicted from HSE06. J Phys Chem Lett, 2014, 5: 1278–1282

    CAS  Google Scholar 

  90. Wolf SD, Holovsky J, Moon SJ, Loper P, Niesen B, Ledinsky M, Haug FJ, Yum JH, Ballif C. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett, 2014, 5: 1035–1039

    Google Scholar 

  91. Zhao YX, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J Phys Chem C, 2014, 118: 9412–9418

    CAS  Google Scholar 

  92. Docampo P, Hanusch F, Stranks SD, Doblinger M, Feckl JM, Ehrensperger M, Minar NK, Johnston MB, Snaith HJ, Bein T. Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells. Adv Energy Mater, 2014, 4: 1400355

    Google Scholar 

  93. Ma YZ, Zheng LL, Chung YS, Chu SS, Xiao LX, Chen ZJ, Wang SF, Qu B, Gong QH, Hou X. A highly efficient mesoscopic solar cell based on CH3NH3PbI3−x Clx via sequential solution deposition. Chem Commun, 2014, 50: 12458–12461

    CAS  Google Scholar 

  94. Zuo CT, Ding LM. An 80.11% FF record achieved for perovskite solar cells by using NH4Cl additive. Nanoscale, 2014, 6: 9935–9938

    CAS  Google Scholar 

  95. Im JH, Jang IH, Pellet N, Grätzel M, Park NG. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotech, 2014, 9: 927–932

    CAS  Google Scholar 

  96. Tidhar Y, Edri E, Weissman H, Zohar D, Hodes G, Cahen D, Rybtchinski B, Kirmayer S. Crystallization of methyl ammonium lead halide perovskites: Implications for photovoltaic applications. J Am Chem Soc, 2014, 136: 13249–13256

    CAS  Google Scholar 

  97. Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, Angelis FD, Mosca R. MAPbI3−xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem Mater, 2013, 25: 4613–4618

    CAS  Google Scholar 

  98. Park BW, Hohansson EMJ, Philippe B, Gustafsson T, Sveinbjornsson K, Hagfeldt A, Boschloo G. Enhanced crystallinity in organicinorganic lead halide perovskites on mesoporous TiO2 via disorderorder phase transition. Chem Mater, 2014, 26: 4466–4471

    CAS  Google Scholar 

  99. Li WZ, Li JL, Wang LD, Niu GD, Gao R, Qiu Y. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. J Mater Chem A, 2013, 1: 11735–11740

    CAS  Google Scholar 

  100. Ito S, Tanaka S, Vahlman H, Nishino H, Manabe K, Lund P. Carbondouble-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: structural control and photoaging effects. Chem-PhysChem, 2014, 15: 1194–1200

    CAS  Google Scholar 

  101. Subbiah AS, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar SK. Inorganic hole conducting layers for perovskite-based solar cells. J Phys Chem Lett, 2014, 5: 1748–1753

    CAS  Google Scholar 

  102. Chavhan SD, Miguel O, Grande HJ, Gonzalez-Pedro V, Sánchez RS, Barea EM, Mora-Seró I, Ramon TZ. Organo-metal halide perovskitebased solar cells with CuSCN as inorganic hole selective contact. J Mater Chem A, 2014, 2, 12754–12760

    CAS  Google Scholar 

  103. Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin MK, Grätzel M. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun, 2014, 5: 3834

    CAS  Google Scholar 

  104. Wu ZW, Bai S, Xiang J, Yuan ZC, Yang YG, Cui W, Gao XY, Liu Z, Jin YZ, Sun BQ. Efficient planar heterojunction perovskite solar cell employing graphene oxide as hole conductor. Nanoscale, 2014, 6, 10505–10510

    CAS  Google Scholar 

  105. Wang KC, Jeng JY, Shen PS, Chang YC, Diau EWG, Tsai CH, Chao TY, Hsu HC, Lin PY, Chen P, Guo TF, Wen TC. p-Type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci Rep, 2014, 4: 4756

    Google Scholar 

  106. Jeng JY, Chen KC, Chiang TY, Lin PY, Tsai TD, Chang YC, Guo TF, Chen P, Wen TC, Hsu YJ. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater, 2014, 26: 4107–4113

    CAS  Google Scholar 

  107. Tian HN, Xu B, Chen H, Johansson EMJ, Boschloo G. Solid-state perovskite-sensitized p-type mesoporous nickel oxide solar cells. ChemSusChem, 2014, 7: 2150–2153

    CAS  Google Scholar 

  108. Hu L, Peng J, Wang WW, Xia Z, Yuan JY, Lu JL, Huang XD, Ma WL, Song HB, Chen W, Cheng YB, Tang J. Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics, 2014, 1: 547–553

    CAS  Google Scholar 

  109. Zhu ZL, Bai Y, Zhang T, Liu ZK, Long X, Wei ZH, Wang ZL, Zhang LX, Wang JN, Yan F, Yang SH. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew Chem Int Ed, 2014, 53: 12571–12575

    CAS  Google Scholar 

  110. Wang KC, Shen PS, Li MH, Chen S, Lin MW, Chen P, Guo TF. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl Mater Interfaces, 2014, 6: 11851–11858

    CAS  Google Scholar 

  111. Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395: 583–585

    CAS  Google Scholar 

  112. Krishnamoorthy T, Kunwu F, Boix PP, Li HR, Koh TM, Leong WL, Powar S, Grimsdale A, Grätzel M, Mathews N, Mhaisalkar SG. A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J Mater Chem A, 2014, 2: 6305–6309

    CAS  Google Scholar 

  113. Polander LE, Pahne, P, Schwarze M, Saalfrank M, Koerner C, Leo K. Hole-transport material variation in fully vacuum deposited perovskite solar cells. APL Mater, 2014, 2: 081503

    Google Scholar 

  114. Krishna A, Sabba D, Li HR, Yin J, Boix PP, Soci C, Mhaisalkar SG, Grimsdale AC. Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells. Chem Sci, 2014, 5: 2702–2709

    CAS  Google Scholar 

  115. Do K, Choi H, Lim K, Jo H, Cho JW, Nazeeruddin MK, Ko J. Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells. Chem Commun, 2014, 50: 10971–10974

    CAS  Google Scholar 

  116. Qin P, Paek S, Dar MI, Pellet N, Ko J, Grätzel M, Nazeeruddin MK. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material. J Am Chem Soc, 2014, 136: 8516–8519

    CAS  Google Scholar 

  117. Choi H, Paek S, Lim N, Lee YH, Nazeeruddin MK, Ko J. Efficient perovskite solar cells with 13.63% efficiency based on planar triphenylamine hole conductors. Chem-Eur J, 2014, 20: 10894–10899

    CAS  Google Scholar 

  118. Li HR, Fu KW, Hagfeldt A, Grätzel M, Mhaisalkar SG, Grimsdale AC. A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. Angew Chem Int Edit, 2014, 53: 4085–4088

    CAS  Google Scholar 

  119. Wang JJ, Wang SR, Li XG, Zhu LF, Meng QB, Xiao Y, Li DM. Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells. Chem Commun, 2014, 50: 5829–5832

    CAS  Google Scholar 

  120. Lv ST, Han LY, Xiao JY, Zhu LF, Shi JJ, Wei HY, Xu YZ, Dong J, Xu X, Li DM, Wang SR, Luo YH, Meng QB, Li XG. Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives. Chem Commun, 2014, 50: 6931–6934

    CAS  Google Scholar 

  121. Zhang H, Shi YT, Yan F, Wang L, Wang K, Xing YJ, Dong QS, Ma TL. A dual functional additive for the HTM layer in perovskite solar cells. Chem Commun, 2014, 50: 5020–5022

    CAS  Google Scholar 

  122. Li WZ, Dong HP, Wang LD, Li N, Guo XD, Li JW, Qiu Y. Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. J Mater Chem A, 2014, 2: 13587–13592

    CAS  Google Scholar 

  123. Xiao JY, Han LY, Zhu LF, Lv ST, Shi JJ, Wei HY, Xu YZ, Dong J, Xu X, Xiao Y, Li DM, Wang SR, Luo YH, Li XG, Meng QB. A thin pristine non-triarylamine hole-transporting material layer for efficient CH3NH3PbI3 perovskite solar cells. RSC Adv, 2014, 4: 32918–32923

    CAS  Google Scholar 

  124. Qin P, Kast H, Nazeeruddin MK, Zakeeruddin SM, Mishra A, Bäuerle P, Grätzel M. Low band gap S, N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells. Energy Environ Sci, 2014, 7: 2981–2985

    CAS  Google Scholar 

  125. Liu J, Wu YZ, Qin CJ, Yang XD, Yasuda T, Islam A, Zhang K, Peng WQ, Chen W, Han LY. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ Sci, 2014, 7: 2963–2967

    CAS  Google Scholar 

  126. Chen HW, Pan X, Liu WQ, Cai ML, Kou DX, Huo ZP, Fang XQ, Dai SY. Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. Chem Commun, 2013, 49: 7277–7279

    CAS  Google Scholar 

  127. Giacomo FD, Razza S, Matteocci F, D’Epifanio A, Licoccia S, Brown TM, Carlo AD. High efficiency CH3NH3PbI(3-x)Cl-x perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J Power Sources, 2014, 251: 152–156

    Google Scholar 

  128. Guo YL, Liu C, Inoue K, Harano K, Tanaka H, Nakamura E. Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. J Mater Chem A, 2014, 2: 13827–13830

    CAS  Google Scholar 

  129. Conings B, Baeten L, Jacobs T, Dera R, D’Haen J, Manca J, Boyen HG. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells. APL Mater, 2014, 2: 081505

    Google Scholar 

  130. Kwon YS, Lim J, Yun HJ, Kim YH, Park T. A diketopyrrolopyrrolecontaining hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite. Energy Environ Sci, 2014, 7: 1454–1460

    CAS  Google Scholar 

  131. Malinkiewicz O, Roldán-Carmona C, Soriano A, Bandiello E, Camacho L, Nazeeruddin MK, Bolink HJ. Metal-oxide-free methylammonium lead iodide perovskite-based solar cells: the influence of organic charge transport layers. Adv Energy Mater, 2014, 4: 1400345

    Google Scholar 

  132. Yan WB, Li YL, Sun WH, Peng HT, Ye SY, Liu ZW, Bian ZQ, Huang CH. High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization. RSC Adv, 2014, 4: 33039–33046

    CAS  Google Scholar 

  133. Shi JJ, Dong W, Xu YZ, Li CH, Lv ST, Zhu LF, Dong J, Luo YH, Li DM, Meng QB, Chen Q. Enhanced performance in perovskite organic lead iodide heterojunction solar cells with metalinsulator-semiconductor back contact. Chin Phys Lett, 2013, 30: 128402

    Google Scholar 

  134. Abstract Book. 1st Conference on Perovskite Solar Cells & New Generation Solar Cells, 2014

    Google Scholar 

  135. Zhao YX, Nardes AM, Zhu K. Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells. Appl Phys Lett, 2014, 104: 213906

    Google Scholar 

  136. Kim HS, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez J, Park NG, Bisquert J. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat Commun, 2013, 4: 2242

    Google Scholar 

  137. Roiati V, Colella S, Lerario G, Marco L, Rizzo A, Listorti A, Gigli G. Investigating charge dynamics in halide perovskite sensitized mesostructured solar cells. Energy Environ Sci, 2014, 7: 1889–1894

    CAS  Google Scholar 

  138. Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S. Charge transfer and recombination at the metal oxide/CH3NH3PbClI2/spiro-OMeTAD interfaces: uncovering the detailed mechanism behind high efficiency solar cells. Phys Chem Chem Phys, 2014, 16: 19984–19992

    CAS  Google Scholar 

  139. Manser JS, Kamat PV. Band filling with free charge carriers in organometal halide perovskites. Nat Photonics, 2014, 8: 737–743

    CAS  Google Scholar 

  140. Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J Am Chem Soc, 2014, 136: 11610–11613

    CAS  Google Scholar 

  141. D’Innocenzo V, Grancini G, Alcocer MJP, Kandada ARS, Stranks SD, Lee MM, Lanzani G, Snaith HJ, Petrozza A. Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun, 2014, 5: 3586

    Google Scholar 

  142. Hegedus SS, Shafarman WN. Thin-film solar cells: device measurements and analysis. Prog Photovolt: Res Appl, 2004, 12: 155–176

    CAS  Google Scholar 

  143. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys, 2011, 13: 9083–9118

    CAS  Google Scholar 

  144. Abate A, Saliba M, Hollman DJ, Stranks SD, Wojciechowski K, Avolio R, Gracini G, Petrozza A, Snaith HJ. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. Nano Lett, 2014, 14: 3247–3254

    CAS  Google Scholar 

  145. Noel NK, Abate A, Stranks SD, Parrott E, Burlakov V, Goriely A, Snaith HJ. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. Nano Lett, 2014, 8: 9815–9821

    CAS  Google Scholar 

  146. Cai B, Xing YD, Yang Z, Zhang WH, Qiu JS. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ Sci, 2013, 6: 1480–1485

    CAS  Google Scholar 

  147. Pang SP, Hu H, Zhang JL, Lv SL, Yu YM, Wei F, Qin TS, Xu HX, Liu ZH, Cui GL. NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem Mater, 2014, 26: 1485–1491

    CAS  Google Scholar 

  148. Niu GD, Li WZ, Meng FQ, Wang LD, Dong HP, Qiu Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A, 2014, 2: 705–710

    CAS  Google Scholar 

  149. Zheng LL, Chung YH, Ma YZ, Zhang LP, Xiao LX, Chen ZJ, Wang SF, Qu B, Gong QH. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem Commun, 2014, 50: 11196–11199

    CAS  Google Scholar 

  150. Ke WJ, Fang GJ, Wang J, Qin PL, Tao H, Lei HW, Liu Q, Dai X, Zhao XZ. Perovskite solar cell with an efficient TiO2 compact film. ACS Appl Mater Interfaces, 2014, 6: 15959–15965

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbo Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Shi, J., Li, D. et al. Perovskite thin-film solar cell: excitation in photovoltaic science. Sci. China Chem. 58, 221–238 (2015). https://doi.org/10.1007/s11426-014-5289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5289-2

Keywords

Navigation