Skip to main content
Log in

Influence of PEG 6000 on gallium oxide (Ga2O3) polymorphs and photocatalytic properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Three different nanorod-like gallium oxides with mono/poly-crystalline nature (α, β, and α/β-Ga2O3) were prepared by regulating the amount of polyethylene glycol (PEG) 6000 in the range of 0.2–0.8 g proportionally via a hydrothermal method combined with further calcination. The bandgap of the products, given by UV-Vis diffuse reflectance spectra (UV-Vis DRS), was in the order of α-Ga2O3 > α/β-Ga2O3 > β-Ga2O3. To further investigate the photocatalysis performance of the catalysts, the decomposition of rhodamine B (RhB) by Ga2O3 under UV light illumination (λ < 387 nm) was presented and complete degradation could be achieved within 30 min, a result that showed the highest efficiency. The photocatalytic oxidation mechanism is further discussed and prominently related to the active species: hydroxyl radical (·OH) and superoxide radical (O2 · −), which were confirmed by electron paramagnetic resonance (EPR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roy R, Hill VG, Osborn EF. Polymorphism of Ga2O3 and the system Ga2O3-H2O. J Am Chem Soc, 1952, 74: 719–722

    Article  CAS  Google Scholar 

  2. Víllora EG, Atou T, Sekiguchi T, Sugawara T, Kikuchi M, Fukuda T. Cathodoluminescence of undoped β-Ga2O3 single crystals. Solid State Commun, 2001, 120: 455–458

    Article  Google Scholar 

  3. Miyata T, Nakatani T, Minami T. Manganese-activated gallium oxide electroluminescent phosphor thin films prepared using various deposition methods. Thin Solid Films, 2000, 373: 145–149

    Article  CAS  Google Scholar 

  4. Wu XC, Song WH, Huang WD, Pu MH, Zhao B, Sun YP, Du JJ. Crystalline gallium oxide nanowires: intensive blue light emitters. Chem Phys Lett, 2000, 328: 5–9

    Article  CAS  Google Scholar 

  5. Liang CH, Meng GW, Wang GZ, Wang YW, Zhang LD, Zhang SY. Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires. Appl Phys Lett, 2001, 78: 3202–3204

    Article  CAS  Google Scholar 

  6. Shashank S and Mahendra KS. Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes. J Am Chem Soc, 2002, 124: 12288–12293

    Article  Google Scholar 

  7. Vanithakumari SC. Nanda KK. A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors. Adv Mater, 2009, 21: 3581–3584

    Article  CAS  Google Scholar 

  8. Víllora EG, Morioka Y, Atou T, Sugawara T, Kikuchi M, Fukuda T. Infrared reflectance and electrical conductivity of β-Ga2O3. Pys Sat Sol (a), 2002, 193: 187–195

    Article  Google Scholar 

  9. Ogita M, Higo K, Nakanishi Y, Hatanaka Y. Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci, 2001, 175–176: 721–725

    Article  Google Scholar 

  10. Trinchi A, Wlodarski W, Li YX. Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC. Sens Actuators B, 2004, 100: 94–98

    Article  CAS  Google Scholar 

  11. Liu ZF, Yamazaki T, Shen YB, Kikuta T, Nakatani N, Li YX. O2 and CO sensing of Ga2O3 multiple nanowire gas sensors. Sens Actuators B, 129: 666–670

  12. Víllora EG, Shimamura K, Aoki K, Ichinose N. Reconstruction of the β-Ga2O3 (100) cleavage surface to hexagonal GaN after NH3 nitridation. J Cryst Growth, 2004, 270: 462–468

    Article  Google Scholar 

  13. Duan XL, Yuan DR, Cheng XF, Liu ZQ, Zhang XQ. Preparation and optical properties of Co2+-doped Li2O-Ga2O3-SiO2 glass-ceramics. J Alloys Compd, 2008, 453: 379–381

    Article  CAS  Google Scholar 

  14. Penner S, Lorenz H, Jochum W, Stöger-Pollach M, Wang D, Rameshan C, Klötzer B. Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects. Appl Catal A: General, 2009, 358: 193–202

    Article  CAS  Google Scholar 

  15. Yu Z, Chen H, Li ZW, Yang ZM, Song HB, Gao YL, Zhang YS, Jin Y, Jiao ZF, Gong M, Zhu JG, Sun XS. Synthesis of ZnGa2O4 nanowires with β-Ga2O3 templates and its photoluminescence performance. Mater Lett, 2009, 63: 37–40

    Article  CAS  Google Scholar 

  16. Li L, Zhang BS, Kunkes EL, Föttinger K, Armbrüster M, Su DS, Wei W, Schlögl R, Behrens M. Ga-Pd/Ga2O3 Catalysts: the role of gallia polymorphs, intermetallic compounds, and pretreatment conditions on selectivity and stability in different reactions. Chemcatchem, 2012, 4: 1764–1775

    Article  CAS  Google Scholar 

  17. Hou YD, Wang XC, Wu L, Ding ZX, Fu XZ. Efficient decomposition of benzene over a β-Ga2O3 photocatalyst under ambient conditions, Environ Sci Technol, 2006, 40: 5799–5803

    Article  CAS  Google Scholar 

  18. Hou YD, Wu L, Wang XC, Ding ZX, Li ZH, Fu XZ. Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air. J Catal, 2007, 250: 12–18

    Article  CAS  Google Scholar 

  19. Teramura K, Tsuneoka H, Shishido T, Tanaka T. Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem Phys Lett, 2008, 467: 191–194

    Article  CAS  Google Scholar 

  20. Zhao BX, Zhang PY. Photocatalytic decomposition of perfluorooctanoic acid with β-Ga2O3 wide bandgap photocatalyst. Catal Commun, 2009, 10: 1184–1187

    Article  CAS  Google Scholar 

  21. Zhao WR, Yang Y, Hao R, Liu FF, Wang Y, Tan M, Tang J, Rena DQ, Zhao DY. Synthesis of mesoporous β-Ga2O3 nanorods using PEG as template: preparation, characterization and photocatalytic properties. J Hazard Mater, 2011, 192: 1548–1554

    Article  CAS  Google Scholar 

  22. Girija K, Thirumalairajan S, Avadhani GS, Mangalaraj D, Ponpandian N, Viswanathan C. Synthesis, morphology, optical and photocatalytic performance of nanostructured β-Ga2O3. Mater Res Bull, 2013, 48: 2296–2303

    Article  CAS  Google Scholar 

  23. Shao T, Zhang PY, Li ZM, Jin L. Photocatalytic decomposition of perfluorooctanoic acid in pure water and wastewater by needle-like nanostructured gallium oxide. Chinese J Catal, 2013, 34: 1551–1559

    Article  CAS  Google Scholar 

  24. Shimura K, Yoshida T, Yoshida H. Phtocatalytic activation of water and methane over modified gallium oxide for hydrogen production. J Phys Chem C, 2010, 114: 11466–11474

    Article  CAS  Google Scholar 

  25. Hwang JS, Liu TY, Chattopadhyay S, Hsu GM, Basilio AM, Chen HW, Hsu YK, Tu WH, Lin YG, Chen KH, Li CC, Wang SB, Chen HY, Chen LC. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation. Nanotechnology, 2013, 24: 055401–055411

    Article  Google Scholar 

  26. Shimura K, Yoshida H. Effect of doped zinc species on the photocatalytic activity of gallium oxide for hydrogen production. Phys Chem Chem Phys, 2012, 14: 2678–2684

    Article  CAS  Google Scholar 

  27. Zhu F, Yang ZX, Zhou WM, Zhang YF. Synthesis of β-Ga2O3 nanowires through microwave plasma chemical vapor deposition. Appl Surf Sci, 2006, 252: 7930–7933

    Article  CAS  Google Scholar 

  28. Orita M, Hiramatsu H, Ohta H, Hirano M, Hosono H. Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures. Thin Solid Films, 2002, 411: 134–139

    Article  CAS  Google Scholar 

  29. Ou SL, Wuu DS, Fu YC, Liu SP, Horng RH, Liu L, Feng ZC. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition. Mater Chem Phys, 2012, 133: 700–705

    Article  CAS  Google Scholar 

  30. Han WQ, Kohler-Redlich P, Ernst F, Rühle M. Growth and microstructure of Ga2O3 nanorods. Solid State Commun, 2000, 115: 527–529

    Article  CAS  Google Scholar 

  31. Choi YC, Kim WS, Park YS, Lee SM, Bae DJ, Lee YH, Park G-S, Choi WB, Lee NS, Kim JM. Catalytic growth of β-Ga2O3 nanowires by arc discharge. Adv Mater, 2000, 12: 746–749

    Article  CAS  Google Scholar 

  32. Dai ZR, Pan ZW, Wang ZL. Gallium Oxide Nanoribbons and nanosheets. J Phys Chem B, 2002, 106: 902–904

    Article  CAS  Google Scholar 

  33. Geng BY, Zhang LD, Meng GW, Xie T, Peng XS, Lin Y. Large-scale synthesis and photoluminescence of single-crystalline β-Ga2O3 nanobelts. J Cryst Growth, 2003, 259: 291–295

    Article  CAS  Google Scholar 

  34. Tang CC, Fan SS, Chapelle MLDL, Li P. Silica-assisted catalytic growth of oxide and nitride nanowires. Chem Phys Lett, 2001, 333: 12–15

    Article  CAS  Google Scholar 

  35. Zhang J, Jiang FH. Catalytic growth of Ga2O3 nanowires by physical evaporation and their photoluminescence properties. Chem Phys, 2003, 289: 243–249

    Article  CAS  Google Scholar 

  36. Xiang X, Cao CB, Guo YJ, Zhu HS. A simple method to synthesize gallium oxide nanosheets and nanobelts. Chem Phys Lett, 2003, 378: 660–664

    Article  CAS  Google Scholar 

  37. Yang ZX, Zhu F, Wu YJ, Zhou WM, Zhang YF. β-Ga2O3 nanowires and nanobelts synthesized by thermal evaporation. Physica E, 2005, 27: 351–354

    Article  CAS  Google Scholar 

  38. Zhan JH, Bando Y, Hu JQ, Xu FF, Golberg D. Unconventional gallium oxide nanowires. Small, 2005, 1: 883–888

    Article  CAS  Google Scholar 

  39. Gundiah G, Govindaraj A, Rao CNR. Nanowires, nanobelts and related nanostructures of Ga2O3. Chem Phys Lett, 2002, 351: 189–194

    Article  CAS  Google Scholar 

  40. Gao YH, Bando Y, Sato T, Zhang YF, Gao XQ. Synthesis, raman scattering and defects of β-Ga2O3 nanorods. Appl Phys Lett, 2002, 81: 2267–2269

    Article  CAS  Google Scholar 

  41. Hu JQ, Li Q, Meng XM, Lee CS, Lee ST. Synthesis of β-Ga2O3 nanowires by laser ablation. J Phys Chem B, 2002, 106: 9536–9539

    Article  CAS  Google Scholar 

  42. Zhang J, Liu ZG, Lin CK, Lin J. A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties. J Cryst Growth, 2005, 280: 99–106

    Article  CAS  Google Scholar 

  43. Sinha G, Chaudhuri S. Controlled solvothermal synthesis of β-Ga2O3 3D microstructures and their optical properties. Mater Chem Phys, 2009, 114: 644–649

    Article  CAS  Google Scholar 

  44. Hou YD, Zhang JS, Ding ZX, Wu L. Synthesis, characterization and photocatalytic activity of β-Ga2O3 nanostructures. Powder Technol, 2010, 203: 440–446

    Article  CAS  Google Scholar 

  45. Quan Y, Fang D, Zhang XY, Liu SQ, Huang KL. Synthesis and characterization of gallium oxide nanowires via a hydrothermal method. Mater Chem Phys, 2010, 121: 142–146

    Article  CAS  Google Scholar 

  46. EL-Sayed EI, Al-Ghamdi AA, Al-Heniti S, Al-Marzouki F, El-Tantawy F. Synthesis of ultrafine β-Ga2O3 nanopowder via hydrothermal approach: a strong UV “excimer-like” emission. Mater Lett, 2011, 65: 317–321

    Article  CAS  Google Scholar 

  47. Sinha G, Adhikary K, Chaudhuri S. Effect of annealing temperature on structural transformation of gallium based nanocrystalline oxide thin films and their optical properties. Opt Mater, 2007, 29: 718–722

    Article  CAS  Google Scholar 

  48. Wang X, Xu Q, Li MR, Shen S, Wang XL, Wang YC, Feng ZC, Shi JY, Han HX, Li C. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. Angew Chem Int Ed, 2012, 51: 13089–13092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingPing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, X., Liu, Z. & Huang, Y. Influence of PEG 6000 on gallium oxide (Ga2O3) polymorphs and photocatalytic properties. Sci. China Chem. 58, 532–538 (2015). https://doi.org/10.1007/s11426-014-5269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5269-6

Keywords

Navigation