Skip to main content
Log in

Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials

  • Reviews
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In recent years, conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells (PSCs). Broad absorption, lower-energy bandgap, higher hole mobility, relatively lower HOMO energy levels, and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance. Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers. In this article, we review recent progress on the side-chain engineering of conjugated polymer donor materials, including the optimization of flexible side-chains for balancing solubility and intermolecular packing (aggregation), electron-withdrawing substituents for lowering HOMO energy levels, and two-dimension (2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility. After the molecular structural optimization by side-chain engineering, the 2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance, with power-conversion efficiency higher than 9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Heeger AJ. 25th Anniversary Article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater, 2014, 26: 10–28

    Article  CAS  Google Scholar 

  2. Thompson BC, Fréchet JMJ. Polymer-fullerene composite solar cells. Angew Chem Int Ed, 2008, 47: 58–77

    Article  CAS  Google Scholar 

  3. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005, 4: 864–868

    Article  CAS  Google Scholar 

  4. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  Google Scholar 

  5. Zhang ZG, Wang JZ. Structures and properties of conjugated donor-acceptor copolymers for solar cell applications. J Mater Chem, 2012, 22: 4178–4187

    Article  CAS  Google Scholar 

  6. Duan C, Huang F, Cao Y. Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J Mater Chem, 2012, 22: 10416–10434

    Article  CAS  Google Scholar 

  7. Lei T, Wang JY, Pei J. Roles of flexible chains in organic semiconducting materials. Chem Mater, 2013, 26: 594–603

    Article  CAS  Google Scholar 

  8. Mei J, Bao ZN. Side chain engineering in solution-processable conjugated polymers. Chem Mater, 2013, 26: 604–615

    Article  CAS  Google Scholar 

  9. Yue W, Zhao Y, Shao S, Tian H, Xie Z, Geng Y, Wang F. Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. J Mater Chem, 2009, 19: 2199–2206

    Article  CAS  Google Scholar 

  10. Marrocchi A, Lanari D, Facchetti A, Vaccaro L. Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energy Environ Sci, 2012, 5: 8457–8474

    Article  CAS  Google Scholar 

  11. Osaka I, McCullough RD. Advances in molecular design and synthesis of regioregular polythiophenes. Acc Chem Res, 2008, 41: 1202–1214

    Article  CAS  Google Scholar 

  12. Dang MT, Hirsch L, Wantz G, Wuest JD. Controlling the morphology and performance of bulk heterojunctions in solar cells. lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem Rev, 2013, 113: 3734–3765

    Article  CAS  Google Scholar 

  13. McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M. Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers. J Am Chem Soc, 1993, 115: 4910–4911

    Article  CAS  Google Scholar 

  14. Sirringhaus H, Tessler N, Friend RH. Integrated optoelectronic devices based on conjugated polymers. Science, 1998, 280: 1741–1744

    Article  CAS  Google Scholar 

  15. Xu B, Holdcroft S. Molecular control of luminescence from poly(3-hexylthiophenes). Macromolecules, 1993, 26: 4457–4460

    Article  CAS  Google Scholar 

  16. Causin V, Marega C, Marigo A, Valentini L, Kenny JM. Crystallization and melting behavior of poly(3-butylthiophene), poly(3-octylthiophene), and poly(3-dodecylthiophene). Macromole-cules, 2004, 38: 409–415

    Article  CAS  Google Scholar 

  17. Chen TA, Wu X, Rieke RD. Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke Zinc: their characterization and solid-state properties. J Am Chem Soc, 1995, 117: 233–244

    Article  CAS  Google Scholar 

  18. Osterbacka R, An CP, Jiang XM, Vardeny ZV. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science, 2000, 287: 839–842

    Article  CAS  Google Scholar 

  19. Nguyen LH, Hoppe H, Erb T, Günes S, Gobsch G, Sariciftci NS. Effects of annealing on the nanomorphology and performance of poly(alkylthiophene):fullerene bulk-heterojunction solar cells. Adv Funct Mater, 2007, 17: 1071–1078

    Article  CAS  Google Scholar 

  20. Cui CH, Sun YP, Zhang ZG, Zhang MJ, Zhang J, Li YF. Effect of branched side chains on the physicochemical and photovoltaic properties of poly(3-hexylthiophene) isomers. Macromol Chem Phys, 2012, 213: 2267–2274

    Article  CAS  Google Scholar 

  21. He YJ, Chen HY, Hou JH, Li YF. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc, 2010, 132: 1377–1382

    Article  CAS  Google Scholar 

  22. Hou JH, Chen TL, Zhang SQ, Huo LJ, Sista S, Yang Y. An easy and effective method to modulate molecular energy level of poly(3-alkylthiophene) for high-V oc polymer solar cells. Macromolecules, 2009, 42: 9217–9219

    Article  CAS  Google Scholar 

  23. Zhang MJ, Guo X, Yang Y, Zhang J, Zhang ZG, Li YF. Downwards tuning the HOMO level of polythiophene by carboxylate substitution for high open-circuit-voltage polymer solar cells. Polym Chem, 2011, 2: 2900–2906

    Article  CAS  Google Scholar 

  24. Zhang MJ, Guo X, Ma W, Ade H, Hou JH. A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv Mater, 2014, 26: 5880–5885

    Article  CAS  Google Scholar 

  25. Huo LJ, Zhou Y, Li YF. Alkylthio-substituted polythiophene: absorption and photovoltaic properties. Macromol Rapid Commun, 2009, 30: 925–931

    Article  CAS  Google Scholar 

  26. Shi C, Yao Y, Yang, Pei QB. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. J Am Chem Soc, 2006, 128: 8980–8986

    Article  CAS  Google Scholar 

  27. Cheng YJ, Luo J, Huang S, Zhou X, Shi Z, Kim TD, Bale DH, Takahashi S, Yick A, Polishak BM, Jang SH, Dalton LR, Reid PJ, Steier WH, Jen AKY, Donor-acceptor thiolated polyenic chromophores exhibiting large optical nonlinearity and excellent photosta bility, Chem Mater, 2008, 20: 5047–5054

    Article  CAS  Google Scholar 

  28. Zhang ZG, Min J, Zhang S, Zhang J, Zhang MJ, Li YF. Alkyl chain engineering on a dithieno 3,2-b:2′,3′-d silole-alt-dithienylthiazolo 5,4-d thiazole copolymer toward high performance bulk heterojunction solar cells. Chem Commun, 2011, 47: 9474–9476

    Article  CAS  Google Scholar 

  29. Zhang MJ, Guo X, Li YF. Synthesis and characterization of a copolymer based on thiazolothiazole and dithienosilole for polymer solar cells. Adv Energ Mater, 2011, 1: 557–560

    Article  CAS  Google Scholar 

  30. Meager I, Ashraf RS, Mollinger S, Schroeder BC, Bronstein H, Beatrup D, Vezie MS, Kirchartz T, Salleo A, Nelson J, McCulloch I. Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. J Am Chem Soc, 2013, 135: 11537–11540

    Article  CAS  Google Scholar 

  31. Price SC, Stuart AC, Yang L, Zhou H, You W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J Am Chem Soc, 2011, 133: 4625–4631

    Article  CAS  Google Scholar 

  32. Qin R, Li W, Li C, Du C, Veit C, Schleiermacher HF, Andersson M, Bo Z, Liu Z, Inganas O, Wuerfel U, Zhang F. A planar copolymer for high efficiency polymer solar cells. J Am Chem Soc, 2009, 131: 14612–14613

    Article  CAS  Google Scholar 

  33. Nguyen TL, Choi H, Ko SJ, Uddin MA, Walker B, Yum S, Jeong JE, Yun MH, Shin TJ, Hwang S, Kim JY, Woo HY. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a [similar]300 nm thick conventional single-cell device. Energy Environ Sci, 2014, 7: 3040–3051

    Article  CAS  Google Scholar 

  34. Min J, Zhang ZG, Zhang S, Li YF. Conjugated side-chain-isolated D-A copolymers based on benzo[1,2-b:4,5-b′]dithiophene-alt-dithienylbenzotriazole: synthesis and photovoltaic properties. Chem Mater, 2012, 24: 3247–3254

    Article  CAS  Google Scholar 

  35. Zhang G, Fu Y, Zhang Q, Xie Z. Benzo[1,2-b:4,5-b′]dithiophene-dioxopyrrolothiophen copolymers for high performance solar cells. Chem Commun, 2010, 46: 4997–4999

    Article  CAS  Google Scholar 

  36. Graham KR, Cabanetos C, Jahnke JP, Idso MN, El Labban A, Ngongang Ndjawa GO, Heumueller T, Vandewal K, Salleo A, Chmelka BF, Amassian A, Beaujuge PM, McGehee MD. Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics. J Am Chem Soc, 2014, 136: 9608–9618

    Article  CAS  Google Scholar 

  37. Chen S, Tsang SW, Lai TH, Reynolds JR, So F. Dielectric effect on the photovoltage loss in organic photovoltaic cells. Adv Mater, 2014, 26: 6125–6131

    Article  CAS  Google Scholar 

  38. Cho N, Schlenker CW, Knesting KM, Koelsch P, Yip HL, Ginger DS, Jen AKY. High-dielectric constant side-chain polymers show reduced non-geminate recombination in heterojunction solar cells. Adv Energ Mater, 2014, 4: 1301857–1301862

    Article  CAS  Google Scholar 

  39. Schlenker CW, Thompson ME. The molecular nature of photovoltage losses in organic solar cells. Chem Commun, 2011, 47: 3702–3716

    Article  CAS  Google Scholar 

  40. Hu X, Shi M, Chen J, Zuo L, Fu L, Liu Y, Chen H. Synthesis and photovoltaic properties of ester group functionalized polythiophene derivatives. Macromol Rapid Commun, 2011, 32: 506–511

    CAS  Google Scholar 

  41. Huo LJ, Chen TL, Zhou Y, Hou JH, Chen HY, Yang Y, Li YF. Improvement of photoluminescent and photovoltaic properties of poly(thienylene vinylene) by carboxylate substitution. Macromolecules, 2009, 42: 4377–4380

    Article  CAS  Google Scholar 

  42. Liang YY, Yu LP. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc Chem Res, 2010, 43: 1227–1236

    Article  CAS  Google Scholar 

  43. Liang YY, Wu Y, Feng D, Tsai ST, Son HJ, Li G, Yu LP. Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc, 2008, 131: 56–57

    Article  CAS  Google Scholar 

  44. Liang YY, Feng D, Wu Y, Tsai ST, Li G, Ray C, Yu LP. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc, 2009, 131: 7792–7799

    Article  CAS  Google Scholar 

  45. Hou JH, Chen HY, Zhang SQ, Chen RI, Yang Y, Wu Y, Li G. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc, 2009, 131: 15586–15587

    Article  CAS  Google Scholar 

  46. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang G, Yang Y, Yu LP, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon, 2009, 3: 649–653

    Article  CAS  Google Scholar 

  47. Huang Y, Huo LJ, Zhang SQ, Guo X, Han CC, Li YF, Hou JH. Sulfonyl: a new application of electron-withdrawing substituent in highly efficient photovoltaic polymer. Chem Commun, 2011, 47: 8904–8906

    Article  CAS  Google Scholar 

  48. Hou JH, Li YF. Preparation methods of polythiophene derivatives with conjugated side chains. China Patent, CN200410088723.8, 2004-12-1

    Google Scholar 

  49. Hou JH, Tan ZA, Li YF. Two dimensional conjugated polymer: synthesis and applications. China Patent, CN2005101322380.5, 2005-12-23

    Google Scholar 

  50. Li YF, Zou YP. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv Mater, 2008, 20: 2952–2958

    Article  CAS  Google Scholar 

  51. Hou JH, Huo LJ, He C, Yang CH, Li YF. Synthesis and absorption spectra of poly(3-(phenylenevinyl)thiophene)s with conjugated side chains. Macromolecules, 2006, 39: 594–603

    Article  CAS  Google Scholar 

  52. Hou JH, Tan ZA, Yan Y, He YJ, Yang CH, Li YF. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. J Am Chem Soc, 2006, 128: 4911–4916

    Article  CAS  Google Scholar 

  53. Hou JH, Yang CH, Li YF. Synthesis of regioregular side-chain conjugated polythiophene and its application in photovoltaic solar cells. Synth Met, 2005, 153: 93–96

    Article  CAS  Google Scholar 

  54. Hou JH, Yang CH, He C, Li YF. Poly[3-(5-octyl-thienylene-vinyl)-thiophene]: a side-chain conjugated polymer with very broad absorption. Chem Commun, 2006, 871–873

    Google Scholar 

  55. Hou JH, Tan ZA, He YJ, Yang CH, Li YF. Branched poly(thienylene vinylene)s with absorption spectra covering the whole visible region. Macromolecules, 2006, 39: 4657–4662

    Article  CAS  Google Scholar 

  56. Zhou EJ, Tan ZA, Huo LJ, He YJ, Yang CH, Li YF. Effect of two-dimensional conjugated structure on the optical, electrochemical, hole mobility and photovoltaic properties of polythiophenes. J Phys Chem B, 2006, 110: 26062–26067

    Article  CAS  Google Scholar 

  57. Zhou EJ, Hou JH, Yang CH, Li YF. Synthesis and characterization of a novel class of polythiophenes with conjugated side-chains containing carbon-carbon double or triple bonds. J Polym Sci A: Polym Chem, 2006, 44: 2206–2214

    Article  CAS  Google Scholar 

  58. Zhou EJ, He C, Tan ZA, Hou JH, Yang CH, Li YF. Effect of side-chain end groups on the optical, electrochemical and photovoltaic properties of side-chain conjugated polythiophenes. J Polym Sci A: Polym Chem, 2006, 44, 4916–4922

    Article  CAS  Google Scholar 

  59. Zou YP, Wu GL, Sang GY, Yang Y, Liu YQ, Li YF. Polythiophene derivative with phenothiazine-vinylene conjugated side chain: synthesis and its application in field-effect transistors. Macromolecules, 2007, 40: 7231–7237

    Article  CAS  Google Scholar 

  60. Huang Y, Wang Y, Sang GY, Zhou EJ, Huo LJ, Liu YQ, Li YF. Polythiophene derivative with the simplest conjugated-side-chain of alkenyl: synthesis and application in polymer solar cells and field-effect transistors. J Phys Chem B, 2008, 112: 13476–13482

    Article  CAS  Google Scholar 

  61. Zhang ZG, Zhang S, Min J, Cui CH, Zhang J, Zhang MJ, Li YF. Conjugated side-chain isolated polythiophene: synthesis and photovoltaic application. Macromolecules, 2012, 45: 113–118

    Article  CAS  Google Scholar 

  62. Zhang ZG, Zhang S, Min J, Cui CH, Geng H, Shuai ZG, Li YF. Side chain engineering of polythiophene derivatives with a thienylenevinylene conjugated side chain for application in polymer solar cells. Macromolecules, 2012, 45: 2312–2320

    Article  CAS  Google Scholar 

  63. Zhou EJ, Cong J, Hashimoto K, Tajima K. Introduction of a conjugated side chain as an effective approach to improving donor-acceptor photovoltaic polymers. Energy Environ Sci, 2012, 5: 9756–9759

    Article  CAS  Google Scholar 

  64. Chao YIH, Jheng JF, Wu JS, Wu KY, Peng HH, Tsai MC, Wang CL, Hsiao YN, Wang CL, Lin CY, Hsu CS. Porphyrin-incorporated 2D D-A polymers with over 8.5% polymer solar cell efficiency. Adv Mater, 2014, 26: 5205–5210

    Article  CAS  Google Scholar 

  65. Zhang ZG, Zhang KL, Liu G, Zhu CX, Neoh KG, Kang ET. Triphenylamine-fluorene alternating conjugated copolymers with pendant acceptor groups: synthesis, structure-property relationship, and photovoltaic application. Macromolecules, 2009, 42: 3104–3111

    Article  CAS  Google Scholar 

  66. Zhang ZG, Liu YL, Yang Y, Hou K, Peng B, Zhao GJ, Zhang MJ, Guo X, Kang ET, Li YF. Alternating copolymers of carbazole and triphenylamine with conjugated side chain attaching acceptor groups: synthesis and photovoltaic application. Macromolecules, 2010, 43: 9376–9383

    Article  CAS  Google Scholar 

  67. Duan C, Cai W, Huang F, Zhang J, Wang M, Yang T, Zhong C, Gong X, Cao Y. Novel silafluorene-based conjugated polymers with pendant acceptor groups for high performance solar cells. Macromolecules, 2010, 43: 5262–5262

    Article  CAS  Google Scholar 

  68. Duan C, Chen KS, Huang F, Yip H-L, Liu S, Zhang J, Jen AKY, Cao Y. Synthesis, characterization, and photovoltaic properties of carbazole-based two-dimensional conjugated polymers with donor-π-bridge-acceptor side chains. Chem Mater, 2010, 22: 6444–6452

    Article  CAS  Google Scholar 

  69. Duan C, Wang C, Liu S, Huang F, Choy CHW, Cao Y. Two-dimensional like conjugated copolymers for high efficiency bulkheterojunction solar cell application: Band gap and energy level engineering. Sci China Chem, 2011, 54: 685–694

    Article  CAS  Google Scholar 

  70. Hsu SL, Chen CM, Wei KH. Carbazole-based conjugated polymers incorporating push/pull organic dyes: synthesis, characterization, and photovoltaic applications. J Polym Sci Part A: Polym Chem, 2010, 48: 5126–5134

    Article  CAS  Google Scholar 

  71. Cheng YJ, Hung LC, Cao FY, Kao WS, Chang CY, Hsu CS. Alternating copolymers incorporating cyclopenta[2,1-b:3,4-b′] dithiophene unit and organic dyes for photovoltaic applications. J Polym Sci Part A: Polym Chem, 2011, 49: 1791–1801

    Article  CAS  Google Scholar 

  72. Sahu D, Padhy H, Patra D, Huang JH, Chu CW, Lin HC. Synthesis and characterization of novel low-bandgap triphenylamine-based conjugated polymers with main-chain donors and pendent acceptors for organic photovoltaics. J Polym Sci Part A: Polym Chem, 2010, 48: 5812–5823

    Article  CAS  Google Scholar 

  73. Duan C, Cai W, Zhong C, Li Y, Wang X, Huang F, Cao Y. Bandgap engineering of indenofluorene-based conjugated copolymers with pendant donor-p-acceptor chromophores for photovoltaic applications. J Polym Sci Part A: Polym Chem, 2011, 49: 4406–4415

    Article  CAS  Google Scholar 

  74. Zhang ZG, Fan H, Min J, Zhang S, Zhang J, Zhang MJ, Guo X, Zhan XW, Li YF. Synthesis and photovoltaic properties of copolymers of carbazole and thiophene with conjugated side chain containing acceptor end groups. Polym Chem, 2011, 2: 1678–1687

    Article  CAS  Google Scholar 

  75. Zhu E, Hai J, Wang Z, Ni B, Jiang Y, Bian L, Zhang F, Tang W. Two-dimensional polyfluorenes bearing thienylenevinylene p-bridge-acceptor side chains for photovoltaic solar cells. J Phys Chem C, 2013, 117: 24700–24709

    Article  CAS  Google Scholar 

  76. Duan C, Hu X, Chen K-S, Yip HL, Li W, Huang F, Jen AKY, Cao Y. Fully visible-light-harvesting conjugated polymers with pendant donor-p-acceptor chromophores for photovoltaic applications. Sol Energy Mater Sol Cells, 2012, 97: 50–58

    Article  CAS  Google Scholar 

  77. Huang F, Chen K-S, Yip H-L, Hau SK, Acton O, Zhang Y, Luo J, Jen AKY. Development of new conjugated polymers with donor-p-bridge-acceptor side chains for high performance solar cells. J Am Chem Soc, 2009, 131: 13886–13887

    Article  CAS  Google Scholar 

  78. Zeigler DF, Chen KS, Yip HL, Zhang Y, Jen AKY. Tunable light-harvesting polymers containing embedded dipolar chromophores for polymer solar cell applications. J Polym Sci Part A: Polym Chem, 2012, 50: 1362–1373

    Article  CAS  Google Scholar 

  79. Fan H, Zhang Z, Li YF, Zhan XW. Copolymers of fluorene and thiophene with conjugated side chain for polymer solar cells: effect of pendant acceptors. J Polym Sci Part A: Polym Chem, 2011, 49: 1462–1470

    Article  CAS  Google Scholar 

  80. Gu Z, Shen P, Tsang SW, Tao Y, Zhao B, Tang P, Nie Y, Fang Y, Tan ST. Development of a new benzo(1,2-b:4,5-b[prime or minute])dithiophene-based copolymer with conjugated dithienylbenzothiadiazole-vinylene side chains for efficient solar cells. Chem Commun, 2011, 47: 9381–9383

    Article  CAS  Google Scholar 

  81. Wang C, Zhao B, Cao Z, Shen P, Tan Z, Li X, Tan ST. Enhanced power conversion efficiencies in bulk heterojunction solar cells based on conjugated polymer with isoindigo side chain. Chem Commun, 2013, 49: 3857–3859

    Article  CAS  Google Scholar 

  82. Huang Y, Zhang M, Chen H, Wu F, Cao Z, Zhang L, Tan ST. Efficient polymer solar cells based on terpolymers with a broad absorption range of 300–900 nm. J Mater Chem A, 2014, 2: 5218–5223

    Article  CAS  Google Scholar 

  83. Shen P, Bin H, Xiao L, Li YF. Enhancing photovoltaic performance of copolymers containing thiophene unit with D-A conjugated side chain by rational molecular design. Macromolecules, 2013, 46: 9575–9586

    Article  CAS  Google Scholar 

  84. Huo LJ, Hou JH. Benzo[1,2-b:4,5-b[prime or minute]]dithiophenebased conjugated polymers: band gap and energy level control and their application in polymer solar cells. Polym Chem, 2011, 2: 2453–2461

    Article  CAS  Google Scholar 

  85. Huo LJ, Hou JH, Zhang SQ, Chen HY, Yang Y. A polybenzo[1,2-b:4,5-b′]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew Chem Int Ed, 2010, 49: 1500–1503

    Article  CAS  Google Scholar 

  86. Liang YY, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu LP. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22: E135–E138

    Article  CAS  Google Scholar 

  87. Huo LJ, Zhang SQ, Guo X, Xu F, Li YF, Hou JH. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew Chem Int Ed, 2011, 50: 9697–9702

    Article  CAS  Google Scholar 

  88. Guo X, Zhang MJ, Ma W, Ye L, Zhang S, Liu S, Ade H, Huang F, Hou JH. Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. Adv Mater, 2014, 26: 4043–4049

    Article  CAS  Google Scholar 

  89. Liao SH, Jhuo HJ, Cheng YS, Chen SA. Fullerene Derivative-Doped Zinc Oxide Nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater, 2013, 25: 4766–4771

    Article  CAS  Google Scholar 

  90. Li K, Li Z, Feng K, Xu X, Wang L, Peng Q. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J Am Chem Soc, 2013, 135: 13549–13557

    Article  CAS  Google Scholar 

  91. Lee D, Hubijar E, Kalaw GJD, Ferraris JP. Enhanced and tunable open-circuit voltage using dialkylthio benzo[1,2-b:4,5-b′]dithiophene in polymer solar cells. Chem Mater, 2012, 24: 2534–2540

    Article  CAS  Google Scholar 

  92. Cui CH, Wong WY, Li YF. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ Sci, 2014, 7: 2276–2284

    Article  CAS  Google Scholar 

  93. Ye L, Zhang S, Zhao W, Yao H, Hou JH. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem Mater, 2014, 26: 3603–3605

    Article  CAS  Google Scholar 

  94. Wang M, Hu X, Liu P, Li W, Gong X, Huang F, Cao Y. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c] bis[1,2,5]thiadiazole for high-performance polymer solar cells. J Am Chem Soc, 2011, 133: 9638–9641

    Article  CAS  Google Scholar 

  95. Yang Y, Wu R, Wang X, Xu X, Li Z, Li K, Peng Q. Isoindigo fluorination to enhance photovoltaic performance of donor-acceptor conjugated copolymers. Chem Commun, 2014, 50: 439–441

    Article  CAS  Google Scholar 

  96. Peng Q, Liu X, Su D, Fu G, Xu J, Dai LM. Novel benzo[1,2-b:4,5-b′]dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells. Adv Mater, 2011, 23: 4554–4558

    Article  CAS  Google Scholar 

  97. Yuan J, Zhai Z, Dong H, Li J, Jiang Z, Li Y, Ma W. Efficient polymer solar cells with a high open circuit voltage of 1 volt. Adv Funct Mater, 2013, 23: 885–892

    Article  CAS  Google Scholar 

  98. Zhou P, Zhang ZG, Li YF, Chen X, Qin JG. Thiophene-fused benzothiadiazole: a strong electron-acceptor unit to build D-A copolymer for highly efficient polymer solar cells. Chem Mater, 2014, 26: 3495–3501

    Article  CAS  Google Scholar 

  99. Liu B, Chen X, He Y, Li YF, Xu X, Xiao L, Li L, Zou YP. New alkylthienyl substituted benzo[1,2-b:4,5-b[prime or minute]]dithio-phene-based polymers for high performance solar cells. J Mater Chem A, 2013, 1: 570–577

    Article  CAS  Google Scholar 

  100. Zhang SQ, Ye L, Zhao W, Liu D, Yao H, Hou JH. Side chain selection for designing highly efficient photovoltaic polymers with 2D-conjugated structure. Macromolecules, 2014, 47: 4653–4659

    Article  CAS  Google Scholar 

  101. Zhang MJ, Guo X, Zhang SQ, Hou JH. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Adv Mater, 2014, 26: 1118–1123

    Article  CAS  Google Scholar 

  102. Xiao Z, Subbiah J, Sun K, Ji S, Jones DJ, Holmes AB, Wong WWH. Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications. J Mater Chem C, 2014, 2: 1306–1313

    Article  CAS  Google Scholar 

  103. Chung HS, Lee WH, Song CE, Shin Y, Kim J, Lee SK, Shin WS, Moon SJ, Kang IN. Highly conjugated side-chain-substituted benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers for use in polymer solar cells. Macromolecules, 2013, 47: 97–105

    Article  CAS  Google Scholar 

  104. Kularatne RS, Sista P, Nguyen HQ, Bhatt MP, Biewer MC, Stefan MC. Donor-acceptor semiconducting polymers containing benzodithiophene with bithienyl substituents. Macromolecules, 2012, 45: 7855–7862

    Article  CAS  Google Scholar 

  105. Kuo CY, Nie W, Tsai H, Yen HJ, Mohite AD, Gupta G, Dattelbaum AM, William DJ, Cha KC, Yang Y, Wang L, Wang HL. Structural design of benzo[1,2-b:4,5-b′]dithiophene-based 2D conjugated polymers with bithienyl and terthienyl substituents toward photovoltaic applications. Macromolecules, 2014, 47: 1008–1020

    Article  CAS  Google Scholar 

  106. Kim JH, Song CE, Kim B, Kang IN, Shin WS, Hwang DH. Thieno[3,2-b]thiophene-substituted benzo[1,2-b:4,5-b′]dithiophene as a promising building block for low bandgap semiconducting polymers for high-performance single and tandem organic photovoltaic cells. Chem Mater, 2013, 26: 1234–1242

    Article  CAS  Google Scholar 

  107. Liu Q, Bao X, Wen S, Du Z, Han L, Zhu D, Chen Y, Sun M, Yang RQ. Hyperconjugated side chained benzodithiophene and 4,7-di-2-thienyl-2,1,3-benzothiadiazole based polymer for solar cells. Polym Chem, 2014, 5: 2076–2082

    Article  CAS  Google Scholar 

  108. Sista P, Nguyen H, Murphy JW, Hao J, Dei DK, Palaniappan K, Servello J, Kularatne RS, Gnade BE, Xue B, Dastoor PC, Biewer MC, Stefan MC. Synthesis and electronic properties of semiconducting polymers containing benzodithiophene with alkyl phenylethynyl substituents. Macromolecules, 2010, 43: 8063–8070

    Article  CAS  Google Scholar 

  109. Dou L, Gao J, Richard E, You J, Chen CC, Cha KC, He Y, Li G, Yang Y. Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. J Am Chem Soc, 2012, 134: 10071–10079

    Article  CAS  Google Scholar 

  110. Zhang MJ, Gu Y, Guo X, Liu F, Zhang SQ, Huo LJ, Russell TP, Hou JH. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. Adv Mater, 2013, 25: 4944–4949

    Article  CAS  Google Scholar 

  111. Yuan J, Xiao L, Liu B, Li YF, He Y, Pan C, Zou YP. New alkoxylphenyl substituted benzo[1,2-b:4,5-b[prime or minute]] dithiophene-based polymers: synthesis and application in solar cells. J Mater Chem A, 2013, 1: 10639–10645

    Article  CAS  Google Scholar 

  112. Ye L, Zhang SQ, Huo LJ, Zhang MJ, Hou JH. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc Chem Res, 2014, 47: 1595–1603

    Article  CAS  Google Scholar 

  113. Hai J, Zhao B, Zhang F, Sheng C-X, Yin L, Li Y, Zhu E, Bian L, Wu H, Tang W. Synthesis and photovoltaic performance of novel thiophenyl-methylene-9H-fluorene-based low bandgap polymers. Polymer, 2013, 54: 4930–4939

    Article  CAS  Google Scholar 

  114. Liu Q, Li C, Jin E, Lu Z, Chen Y, Li F, Bo ZS. 9-Arylidene-9H-fluorene-containing polymers for high efficiency polymer solar cells. ACS Appl Mater Interfaces, 2014, 6: 1601–1607

    Article  CAS  Google Scholar 

  115. Zhang MJ, Guo X, Ma W, Zhang S, Huo LJ, Ade H, Hou JH. An easy and effective method to modulate molecular energy level of the polymer based on benzodithiophene for the application in polymer solar cells. Adv Mater, 2014, 26: 2089–2095

    Article  CAS  Google Scholar 

  116. Almeataq MS, Yi H, Al-Faifi S, Alghamdi AAB, Iraqi A, Scarratt NW, Wang T, Lidzey DG. Anthracene-based donor-acceptor low band gap polymers for application in solar cells. Chem Commun, 2013, 49: 2252–2254

    Article  CAS  Google Scholar 

  117. Wu Y, Li Z, Ma W, Huang Y, Huo LJ, Guo X, Zhang MJ, Ade H, Hou JH. PDT-S-T: a new polymer with optimized molecular conformation for controlled aggregation and p-p stacking and its application in efficient photovoltaic devices. Adv Mater, 2013, 25: 3449–3455

    Article  CAS  Google Scholar 

  118. Li S, Yuan Z, Deng P, Sun B, Zhang Q. Synthesis and photovoltaic performances of a conjugated polymer based on a new naphthodifuran monomer. Polym Chem, 2014, 5: 2561–2566

    Article  CAS  Google Scholar 

  119. Li S, Yuan J, Deng P, Ma W, Zhang Q. A comparative study of diketopyrrolopyrrole and isoindigo based polymers for organic photovoltaic applications. Dyes Pigments, 2014, 106: 121–127

    Article  CAS  Google Scholar 

  120. Zhou P, Dang D, Fan J, Xiong W, Yang C, Tan H, Wang Y, Liu Y, Zhu W. Increasing thiophene spacers between thieno[3,2-b] thiophene and benzothiadiazole units in backbone to enhance photovoltaic performance for their 2-D polymers. Dyes Pigments, 2015, 112: 99–104

    Article  CAS  Google Scholar 

  121. Peng Q, Lim SL, Wong IHK, Xu J, Chen ZK. Synthesis and photovoltaic properties of two-dimensional low-bandgap copolymers based on new benzothiadiazole derivatives with different conjugated arylvinylene side chains. Chem Eur J, 2012, 18: 12140–12151

    Article  CAS  Google Scholar 

  122. Shen P, Bin H, Chen X, Li YF. Side chain effect on photovoltaic properties of D-A copolymers based on benzodithiophene and thiophene-substituted bithiazole. Org Electron, 2013, 14: 3152–3162

    Article  CAS  Google Scholar 

  123. Lin YZ, Zhan XW. Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Mater Horiz, 2014, 1: 470–488

    Article  CAS  Google Scholar 

  124. Liu X, Cai P, Chen DC, Chen JW, Su SJ, Cao Y. Small molecular non-fullerene electron acceptors for P3HT-based bulk-heterojunction solar cells. Sci China Chem, 2014, 57: 973–981

    Article  CAS  Google Scholar 

  125. Holcombe TW, Norton JE, Rivnay J, Woo CH, Goris L, Piliego C, Griffini G, Sellinger A, Brédas J-L, Salleo A, Fréchet JMJ. Steric control of the donor/acceptor interface: implications in organic photovoltaic charge generation. J Am Chem Soc, 2011, 133: 12106–12114

    Article  CAS  Google Scholar 

  126. Zhou EJ, Cong J, Wei Q, Tajima K, Yang CH, Hashimoto K. All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew Chem Int Ed, 2011, 50: 2799–2803

    Article  CAS  Google Scholar 

  127. Zhou EJ, Cong J, Hashimoto K, Tajima K. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Adv Mater, 2013, 25: 6991–6996

    Article  CAS  Google Scholar 

  128. Shivanna R, Shoaee S, Dimitrov S, Kandappa SK, Rajaram S, Durrant JR, Narayan KS. Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. Energy Environ Sci, 2014, 7: 435–441

    Article  CAS  Google Scholar 

  129. Zhang X, Lu Z, Ye L, Zhan CL, Hou JH, Zhang S, Jiang B, Zhao Y, Huang J, Zhang S, Liu Y, Shi Q, Liu Y, Yao JN. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4. 03% efficiency. Adv Mater, 2013, 25: 5791–5797

    Article  CAS  Google Scholar 

  130. Lin YZ, Wang Y, Wang J, Hou JH, Li YF, Zhu DB, Zhan XW. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells. Adv Mater, 2014, 26: 5137–5142

    Article  CAS  Google Scholar 

  131. Mori D, Benten H, Okada I, Ohkita H, Ito S. Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ Sci, 2014, 7: 2939–2943

    Article  CAS  Google Scholar 

  132. Zhang Y, Li CZ, Chueh CC, Williams ST, Jiang W, Wang ZH, Yu JS, Jen AKY. Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells. Adv Mater, 2014, 26: 5708–5714

    Article  CAS  Google Scholar 

  133. Zhan XW, Tan ZA, Domercq B, An Z, Zhang X, Barlow S, Li YF, Zhu DB, Kippelen B, Marder SR. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc, 2007, 129: 7246–7247

    Article  CAS  Google Scholar 

  134. Liao XX, Zhao X, Zhang ZG, Wang HQ, Zhan X, Li Y, Wang J, Zheng JC. All-polymer solar cells based on side-chain-isolated polythiophenes and poly(perylene diimide-alt-dithienothiophene). Sol Energy Mater Sol Cells, 2013, 117: 336–342

    Article  CAS  Google Scholar 

  135. Jiang W, Ye L, Li X, Xiao C, Tan F, Zhao W, Hou JH, Wang ZH. Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chem Commun, 2014, 50: 1024–1026

    Article  CAS  Google Scholar 

  136. Ye L, Jiang W, Zhao W, Zhang S, Qian D, Wang ZH, Hou JH. Selecting a donor polymer for realizing favorable morphology in efficient non-fullerene acceptor-based solar cells. Small, 2014, 10: 4658–4663

    Article  CAS  Google Scholar 

  137. Mori D, Benten H, Okada I, Ohkita H, Ito S. Low-bandgap donor/acceptor polymer blend solar cells with efficiency exceeding 4%. Adv Energ Mater, 2014, 4: 1301006

    Article  CAS  Google Scholar 

  138. Mu C, Liu P, Ma W, Jiang K, Zhao J, Zhang K, Chen Z, Wei Z, Yi Y, Wang J, Yang S, Huang F, Facchetti A, Ade H, Yan H. High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv Mater, 2014, 26: 7224–7230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZG., Li, Y. Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Sci. China Chem. 58, 192–209 (2015). https://doi.org/10.1007/s11426-014-5260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5260-2

Keywords

Navigation