Skip to main content
Log in

The origin of the site preference of H adsorption on Pd(100)

  • Articles
  • Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Spin-polarized density functional theory (DFT) calculations are carried out to determine the site preference of H adsorption on Pd(100) surface and subsurface. We carefully scrutinize the energy difference between different patterns at θ=0.50 ML and confirm the LEED observation that surface adsorption can form c(2×2) ordering structure. On the contrary, we disclose that p(2×1) structure become more favorable than c(2×2) for subsurface adsorption. These site preferences are rationalized via an analysis of the layer and orbital resolved density of states. Furthermore, we propose that the interstitial charge as a key factor determining the preferred H adsorbed site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld G, Volkl J. Hydrogen in Metals I and II. Berlin: Springer, 1978

    Google Scholar 

  2. Chorkendorff I, Niemantsverdriet JW. Concepts of Modern Catalysis and Kinetics. Weinheim, German: Wiley-VCH, 2003

    Book  Google Scholar 

  3. Satterfield CN. Heterogeneous Catalysis in Industrial Practice. New York: McGraw-Hill, 1996

    Google Scholar 

  4. Somorjai G. Introduction to Surface Chemistry and Catalysis. New York: Wiley, 1994

    Google Scholar 

  5. Schmidt PK, Christmann K, Kresse G, Hafner J, Lischka M, Groß A. Coexistence of atomic and molecular chemisorption states: H2/Pd(210). Phys Rev Lett, 2001, 87: 096103

    Article  CAS  Google Scholar 

  6. Jung SC, Kang MH. Effect of hydrogen on the surface relaxation of Pd(100), Rh(100), and Ag(100). Phys Rev B, 2005, 72: 205419

    Article  Google Scholar 

  7. Groß A, Dianat A. Hydrogen dissociation dynamics on precovered Pd surfaces: langmuir is still right. Phys Rev Lett, 2007, 98: 206107

    Article  Google Scholar 

  8. Wang XW, Louie SG, Cohen ML. Hydrogen interactions in PdHn (1<n<4). Phys Rev B, 1989, 40: 5822–5825

    Article  CAS  Google Scholar 

  9. Teschner D, Vass E, Hävecker M, Zafeiratos S, Schnörch P, Sauer H, Knop-Gericke A, Schlögl R, Chamam M, Wootsch A, Canning AS, Gamman JJ, Jackson SD, McGregor J, Gladden LF. Alkyne hydrogenation over Pd catalysts: a new paradigm. J Catal, 2006, 242: 26–37

    Article  CAS  Google Scholar 

  10. Bridier B, Lopez N, Perez-Ramirez J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton T, 2010, 39: 8412–8419

    Article  CAS  Google Scholar 

  11. Teschner D, Revay Z, Borsodi J, Havecker M, Knop-Gericke A, Schlogl R, Milroy D, Jackson SD, Torres D, Sautet P. Understanding palladium hydrogenation catalysts: when the nature of the reactive molecule controls the nature of the catalyst active phase. Angew Chem Int Ed, 2008, 47: 9274–9278

    Article  CAS  Google Scholar 

  12. Quinn J, Li Y, Tian D, Li H, Jona F, Marcus P. Anomalous multilayer relaxation of Pd(001). Phys Rev B, 1990, 42: 11348–11351

    Article  CAS  Google Scholar 

  13. Behm RJ, Christmann K, Ertl G. Adsorption of hydrogen on Pd(100). Surf Sci, 1980, 99: 320–340

    Article  CAS  Google Scholar 

  14. Tománek D, Sun Z, Louie S. Ab initio calculation of chemisorption systems: H on Pd(001) and Pd(110). Phys Rev B, 1991, 43: 4699–4713

    Article  Google Scholar 

  15. Ganduglia-Pirovano M, Cohen M, Kudrnovský J. Interference, resonances, and bound states at the Pd(001) and Rh(001) surfaces. Phys Rev B, 1994, 50: 11142–11145

    Article  CAS  Google Scholar 

  16. Louise Stauffer RR. Interaction between hydrogen atoms near a Pd(001) surface: the electronic structure. Surf Sci, 1990, 238: 83–94

    Article  Google Scholar 

  17. Nyberg C, Tengstål C. Vibrational Interaction between hydrogen atoms adsorbed on Pd(100). Phys Rev Lett, 1983, 50: 1680–1683

    Article  CAS  Google Scholar 

  18. Wilke S, Hennig D, Löber R, Methfessel M, Scheffler M. Ab initio study of hydrogen adsorption on Pd(100). Surf Sci, 1994, 307-309: 76–81

    Article  CAS  Google Scholar 

  19. Wilke S, Hennig D, Löber R. Ab initio calculations of hydrogen adsorption on (100) surfaces of palladium and rhodium. Phys Rev B, 1994, 50: 2548–2560

    Article  CAS  Google Scholar 

  20. Dong W, Ledentu V, Sautet P, Eichler A, Hafner J. Hydrogen adsorption on palladium: a comparative theoretical study of different surfaces. Surf Sci, 1998, 411: 123–136

    Article  CAS  Google Scholar 

  21. Chizallet Cl, Bonnard Gt, Krebs E, Bisson L, Thomazeau CC, Raybaud P. Thermodynamic stability of buta-1,3-diene and but-1-ene on Pd(111) and (100) surfaces under H2 pressure: a DFT study. J Phys Chem C, 2011, 115: 12135–12149

    Article  CAS  Google Scholar 

  22. Szymerska I, Lipski M. LEED-AES studies of chemisorption-induced sulfur segregation from the bulk to the surface of Pd(100). J Catal, 1976, 41: 197–201

    Article  CAS  Google Scholar 

  23. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  26. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  27. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  Google Scholar 

  28. Wicke E, Brodowsky H. Hydrogen in Metals. Berlin: Springer, 1978

    Google Scholar 

  29. Pallassana V, Neurock M, Hansen LB, Hammer B, Nørskov JK. Theoretical analysis of hydrogen chemisorption on Pd(111), Re(0001) and PdML/Re(0001), ReML/Pd(111) pseudomorphic overlayers. Phys Rev B, 1999, 60: 6146–6154

    Article  CAS  Google Scholar 

  30. Paul JF, Sautet P. Comparison of the nature of the hydrogen-metal bond on Pd(111) and Ni(111) by a periodic density functional method. Surf Sci, 1996, 356: L403–L409

    Article  CAS  Google Scholar 

  31. Jiang DE, Carter EA. Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles. Surf Sci, 2003, 547: 85–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Fu or Huilin Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhao, Y., Chen, Z. et al. The origin of the site preference of H adsorption on Pd(100). Sci. China Chem. 58, 156–161 (2015). https://doi.org/10.1007/s11426-014-5255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5255-z

Keywords

Navigation