Skip to main content
Log in

Preparation of Co- or Mn-substituted LTL zeolites and their catalytic properties in cyclohexane oxidation

  • Articles
  • Special Issue In honor of the 100th birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Co- or Mn-substituted LTL zeolites were hydrothermally synthesized by a novel organic-ligand-assisted method. XRD, UV-Vis DRS, XPS, and EPR techniques verified that the Co and Mn ions were incorporated into the zeolite framework. No organic species were retained in as-synthesized Co or Mn-LTL zeolites, which resulted in porous materials without calcination. In the oxidation of cyclohexane with tert-butyl hydroperoxide (TBHP), the Co-LTL and Mn-LTL gave a 40%–48% KA oil (cyclohexanone and cyclohexanol) yield as well as nearly 100% TBHP conversion under mild reaction conditions. The reactions were confirmed to be heterogeneous and to have proceeded catalytically. No loss of catalytic activity or leaching of metal active sites ions were observed during 4 reuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hermans I, Jacobs PA, Peeters J. To the core of autocatalysis in cyclohexane autoxidation. Chem Eur J, 2006, 12: 4229–4240

    Article  CAS  Google Scholar 

  2. Song F, Liu YM, Wu HH, He MY, Wu P, Tatsumi T. A novel titanosilicate with MWW structure: highly effective liquid-phase ammoximation of cyclohexanone. J Catal, 2006, 237: 359–367

    Article  CAS  Google Scholar 

  3. Zhao S, Xie W, Yang JX, Yang JX, Liu YM, Zhang YT, Xu BL, Jiang JG, He MY, Wu P. An investigation into cyclohexanone ammoximation over Ti-MWW in a continuous slurry reactor. Appl Catal A, 2011, 394: 1–8

    Article  CAS  Google Scholar 

  4. Zhou WJ, Wischert R, Xue K, Zheng YT, Albela B, Bonneviot L, Clacens JM, Decampo F, Titus MP, Wu P. Highly selective liquid-phase oxidation of cyclohexane to KA oil over Ti-MWW catalyst: evidence of formation of oxylradicals. ACS Catal, 2014, 4: 53–62

    Article  CAS  Google Scholar 

  5. Shi CF, Zhu B, Lin M, Long J, Wang RW. Cyclohexane mild oxidation catalyzed by new titanosilicate with hollow structure. Catal Today, 2011, 175: 398–403

    Article  CAS  Google Scholar 

  6. Wang JY, Zhao FY, Liu RJ, Hu YQ. Oxidation of cyclohexane catalyzed by metal-containing ZSM-5 in ionic liquid. J Mol Catal A Chem, 2008, 279: 153–158

    Article  CAS  Google Scholar 

  7. Hu YQ, Wang JY, Zhao RH, Liu YM, Liu RJ, Li YD. Catalytic oxidation of cyclohexane over ZSM-5 catalyst in N-alkyl-N-methylimidazolium ionic liquids. Chin J Chem Eng, 2009, 17: 407–411

    Article  CAS  Google Scholar 

  8. Gu JL, Huang Y, Elangovan SP, Li YS, Zhao WR, Toshio I, Yamazaki Y, Shi JL. Highly dispersed copper species within SBA-15 introduced by the hydrophobic core of a surfactant micelle as a carrier and their enhanced catalytic activity for cyclohexane oxidation. J Phys Chem C, 2011, 115: 21211–21217

    Article  CAS  Google Scholar 

  9. Reddy SS, Raju BD, Padmasri AH, Prakash PKS, Rao KSR. Novel and efficient cobalt encapsulated SBA-15 catalysts for the selective oxidation of cyclohexane. Catal Today, 2009, 141: 61–65

    Article  Google Scholar 

  10. Anand R, Hamdy MS, Hanefeld U, Maschmeyer T. Liquid-phase oxidation of cyclohexane over Co-TUD-1. Catal Lett, 2004, 95: 113–117

    Article  CAS  Google Scholar 

  11. Zhao R, Ji D, Lu GM, Qian G, Yan L, Wang XL, Suo JS. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant. Chem Commun, 2004, 35: 904–905

    Article  Google Scholar 

  12. Lue GM, Zhao R, Qian G, Qi YX, Wang XL, Suo JS. A highly efficient catalyst Au/MCM-41 for selective oxidation cyclohexane using oxygen. Catal Lett, 2004, 97: 115–118

    Article  CAS  Google Scholar 

  13. Li L, Jin C, Wang XC, Ji WJ, Pan Y, Theo VSK, Roland SVD, Au CT. Cyclohexane oxidation over size-uniform Au nanoparticles (SBA-15 hosted) in a continuously stirred tank reactor under mild conditions. Catal Lett, 2009, 129: 303–311

    Article  CAS  Google Scholar 

  14. Zhou LP, Xu J, Miao H, Wang F, Li XQ. Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4 nanocrystals with molecular oxygen. Appl Catal A, 2005, 292: 223–228

    Article  CAS  Google Scholar 

  15. Aboelfetoh EF, Fechtelkord M, Pietschnig R. Structure and catalytic properties of MgO-supported vanadium oxide in the selective oxidation of cyclohexane. J Mol Catal A Chem, 2010, 318: 51–59

    Article  CAS  Google Scholar 

  16. Sun ZG, Li G, Liu LP, Liu HO. Au nanoparticles supported on Cr-based metal-organic framework as bimetallic catalyst for selective oxidation of cyclohexane to cyclohexanone and cyclohexanol. Catal Commun, 2012, 27: 200–205

    Article  CAS  Google Scholar 

  17. Xie MH, Yang XL, He YB, Zhang J, Chen BL, Wu CD. Highly efficient C-H oxidative activation by a porous MnIII-porphyrin metal-organic framework under mild conditions. Chem Eur J, 2013, 19: 14316–14321

    Article  CAS  Google Scholar 

  18. Teramura K, Tanaka T, Hosokawa T, Ohuchi T, Kani M, Funabiki T. Selective photo-oxidation of various hydrocarbons in the liquid phase over V2O5/Al2O3. Catal Today, 2004, 96: 205–209

    Article  CAS  Google Scholar 

  19. Li XH, Chen, JS, Wang XC, Sun JH, Antonietti M. Metal-free activation of dioxygen by graphene/g-C3N4nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. J Am Chem Soc, 2011, 133: 8074–8077

    Article  CAS  Google Scholar 

  20. Zhang YC, Dai WL, Wu GJ, Guan NJ, Li, LD. Cyclohexane oxidation: small organic molecules as catalysts. Chin J Catal, 2014, 35: 279–285

    Article  CAS  Google Scholar 

  21. Sankar G, Raja RR, Thomas JM. Redox solid catalysts for the selective oxidation of cyclohexane in air. Catal Lett, 1998, 55: 15–23

    Article  CAS  Google Scholar 

  22. Blasco T, Camblor MA, Corma A, Esteve P, Guil JM, Martinez A, Perdigon-Melon JA, Valencia S. Direct synthesis and characterization of hydrophobic aluminum-free Ti-beta zeolite. J Phys Chem B, 1998, 102: 75–88

    Article  CAS  Google Scholar 

  23. Corma A, Nemeth LT, Renz M, Valencia S. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature, 2001, 412: 423–425

    Article  CAS  Google Scholar 

  24. Zhu YZ, Chuah G, Jaenicke S. Chemo- and regioselective Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. J Catal, 2004, 227: 1–10

    Article  CAS  Google Scholar 

  25. Garces LJ, Makwana VD, Hincapie B, Sacco A, Suib SL. Selective N,N-methylation of aniline over cocrystallized zeolites RHO and zeolite X(FAU) and over Linde type L (Sr,K-LTL). J Catal, 2003, 217: 107–116

    CAS  Google Scholar 

  26. Canesson L, Arcon I, Caldarelli S, Tuel A. Synthesis and characterization of cobalt-containing hydrated aluminophosphate molecular sieves CoAPO4-H3. Micropor Mesopor Mater, 1998, 26: 117–131

    Article  CAS  Google Scholar 

  27. Gao QM, Weckhuysen BM, Schoonheydt RA. On the synthesis of CoAPO-46, -11 and -44 molecular sieves from a Co(Ac)z2·4H2O·Al (iPrO)3·H3PO4·Pr2NH·H2O gel via experimental design. Micropor Mesopor Mater, 1999, 27: 7

    Article  Google Scholar 

  28. Tusar NN, Mail G, Arcon I, Kaucic V, Ghanbari-Siahkali A, Dwyer J. Framework cobalt and manganese in MeAPO-31 (Me=Co, Mn) molecular sieves. Micropor Mesopor Mater, 2002, 55: 203–216

    Article  CAS  Google Scholar 

  29. Meng YT, Genuino HC, Kuo CH, Huang H, Chen SY, Zhang LC, Rossi A, Suib SL. One-step hydrothermal synthesis of manganese-containing MFI type zeolite, Mn-ZSM-5, characterization, and catalytic oxidation of hydrocarbons. J Am Chem Soc, 2013, 135: 8594–8605

    Article  CAS  Google Scholar 

  30. Li C, Xiong G, Liu JK, Ying PL, Xin Q, Feng ZC. Identifying framework Titanium in TS-1 zeolite by UV resonance Raman spectroscopy. J Phys Chem B, 2001, 105: 2993–2997

    Article  CAS  Google Scholar 

  31. Moden B, Oliviero L, Dakka J, Santiesteban JG, Iglesia E. Structural and functional characterization of redox Mn and Co sites in AlPO materials and their role in alkane oxidation catalysis. J Phys Chem B, 2004, 108: 5552–5563

    Article  CAS  Google Scholar 

  32. Dudric R, Vladescu A, Rednic V, Neumann M, Deac IG, Tetran R. XPS study on La0.67Ca0.33Mn1−x CoxO3 compounds. J Mol Struct, 2014, 1073: 66–70

    Article  CAS  Google Scholar 

  33. Maheswari R, Anand R, Imran G. MnTUD-1: synthesis, characterization and catalytic behavior in liquid-phase oxidation of cyclohexane. J Porous Mater, 2012, 19: 283–288

    Article  CAS  Google Scholar 

  34. Visuvanmithiran P, Shanthi K, Palanichamy M, Murugesan V. Direct synthesis of Mn-Ti-SBA-15 catalyst for the oxidation of ethylbenzene. Catal Sci Technol, 2013, 3: 2340–2348

    Article  Google Scholar 

  35. Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz RS, Guerreiro MC, Mandelli D, Spinace EV, Pires EL. Cyclohexane oxidation continues to be a challenge. Appl Catal A Gen, 2001, 211: 1–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, K., Yang, B. & Wu, P. Preparation of Co- or Mn-substituted LTL zeolites and their catalytic properties in cyclohexane oxidation. Sci. China Chem. 58, 139–147 (2015). https://doi.org/10.1007/s11426-014-5248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5248-y

Keywords

Navigation